Find the sum of integers from 11 to 1000 which are divisible by 3
Answers
Answered by
5
AP: 12,15,18........ 999
a=12, d=3,an=999, n=?,
an= a+(n-1)d
999=12+(n-1)3
987=(n-1)3
329=n-1
n=330
Now using the sum formula,
n=330,a=12,an=999
Sn=n/2[a+an]
=330/2(12+999)
=165*1011
=166815
This is the answer!!
a=12, d=3,an=999, n=?,
an= a+(n-1)d
999=12+(n-1)3
987=(n-1)3
329=n-1
n=330
Now using the sum formula,
n=330,a=12,an=999
Sn=n/2[a+an]
=330/2(12+999)
=165*1011
=166815
This is the answer!!
Answered by
2
Solution :
_____________________________________________________________
Given :
To Find the sum of the numbers divisible by 3, between 11 to 1000,.
∴ a = 12,
∴ d = 3,.
_____________________________________________________________
To find we need to find number of terms :
⇒ [tex]a_n = a + (n - 1)d [/tex]
⇒
⇒
⇒ 988 = (n - 1) 3
⇒
⇒
⇒
⇒
⇒ n = 330 (as 1000 isn't divisible by 3⇒ )
_______________________________________________
⇒
⇒
⇒
⇒
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
_____________________________________________________________
Given :
To Find the sum of the numbers divisible by 3, between 11 to 1000,.
∴ a = 12,
∴ d = 3,.
_____________________________________________________________
To find we need to find number of terms :
⇒ [tex]a_n = a + (n - 1)d [/tex]
⇒
⇒
⇒ 988 = (n - 1) 3
⇒
⇒
⇒
⇒
⇒ n = 330 (as 1000 isn't divisible by 3⇒ )
_______________________________________________
⇒
⇒
⇒
⇒
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
Similar questions