Math, asked by kushwahasalesdabouli, 7 months ago

find the sum of money when
(i) final amount is 11300 at 4% p.a. for 3 years 3 months.

Answers

Answered by Anonymous
21

↝To Find :

The Sum of Money or the Principal .

↝We Know :

Amount Formula :

(When n years and n(m) months are given)

\purple{\sf{\underline{\boxed{A = P\left(1 + \dfrac{R}{100}\right)^{n}\left(1 + \dfrac{R \times \dfrac{n_{m}}{12}}{100}\right)}}}}

Where ,

  • A = Amount
  • P = Principal
  • R = Rate of interest per annum
  • n(m) = months
  • n = time period

↝Solution :

→ Given :

  • Amount = 11300
  • Rate = 4 % p.a
  • Time = 3 years 3 months

Taken :

Let the Principal or sum of money be P .

Using the formula and by substituting the values in it , we get :

\purple{\sf{A = P\left(1 + \dfrac{R}{100}\right)^{n}\left(1 + \dfrac{R \times \dfrac{n_{m}}{12}}{100}\right)}}

\\

\sf{\Rightarrow 11300 = P\left(1 + \dfrac{4}{100}\right)^{3}\left(1 + \dfrac{4 \times \dfrac{\cancel{3}}{\cancel{12}}}{100}\right)}

\\

\sf{\Rightarrow 11300 = P\left(\dfrac{100 + 4}{100}\right)^{3}\left(1 + \dfrac{\cancel{4} \times \dfrac{1}{\cancel{4}}}{100}\right)}

\\

\sf{\Rightarrow 11300 = P\left(\dfrac{104}{100}\right)^{3}\left(1 + \dfrac{1}{100}\right)}

\\

\sf{\Rightarrow 11300 = P\left(\dfrac{104}{100}\right)^{3}\left(\dfrac{100 + 1}{100}\right)}

\\

\sf{\Rightarrow 11300 = P\left(\dfrac{104}{100}\right) \times \left(\dfrac{104}{100}\right) \times \left(\dfrac{104}{100}\right) \times \left(\dfrac{100 + 1}{100}\right)}

\\

\sf{\Rightarrow \dfrac{11300}{P} = \left(\dfrac{104}{100}\right) \times \left(\dfrac{104}{100}\right) \times \left(\dfrac{104}{100}\right) \times \left(\dfrac{101}{100}\right)}

\\

\sf{\Rightarrow \dfrac{1}{P} = \dfrac{\left(\dfrac{\cancel{104}}{\cancel{100}}\right) \times \left(\dfrac{\cancel{104}}{\cancel{100}}\right) \times \left(\dfrac{\cancel{104}}{\cancel{100}}\right) \times \left(\dfrac{101}{\cancel{100}}\right)}{11300}}

\\

\sf{\Rightarrow \dfrac{1}{P} = \dfrac{\left(\dfrac{13}{25}\right) \times \left(\dfrac{26}{25}\right) \times \left(\dfrac{13}{25}\right) \times \left(\dfrac{101}{25}\right)}{11300}}

\\

\sf{\Rightarrow \dfrac{1}{P} = \dfrac{\left(\dfrac{13 \times 26 \times 13 \times 101}{25 \times 25 \times 25 \times 25}\right)}{11300}}

\\

\sf{\Rightarrow \dfrac{1}{P} = \dfrac{\left(\dfrac{443794}{390625}\right)}{11300}}

\\

\sf{\Rightarrow \dfrac{1}{P} = \dfrac{1.134}{11300}}

\\

By cross-multiplication , we get :

\\

\sf{\Rightarrow 11300 = 1.134P}

\\

\sf{\Rightarrow \dfrac{11300}{1.134} = P}

\\

\sf{\Rightarrow 8432.85 = P}

\\

\purple{\sf{\therefore P = 8432.85}}

\\

Hence ,the sum of money or Principal is ₹ 8432.85.

» Additional Information :

  • Simple Interest :

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf{SI = \dfrac{P \times R \times T}{100}}

  • Rate :

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf{R = \dfrac{100 \times t}{P \times T}}

  • Time :

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf{T = \dfrac{100 \times t}{P \times R}}

  • Principal :

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf{P = \dfrac{100 \times t}{R \times T}}

Answered by reeonmaji429
1

This picture might help you

Attachments:
Similar questions