Math, asked by Sara09, 1 year ago

Find the sum of money which will amount to $27783 in 3 years at 5% per annum, the interest being compounded annually

Answers

Answered by StarrySoul
55

Answer:

Rs 24000

Step-by-step explanation:

 \sf \: Amount = Rs \: 27783

 \sf \: Time = 3 \: years

 \sf \: Rate \: = 5  \%

\textbf{\underline{\underline{To\:Find\:The\:Principal}}}

Let Principal be P

 \sf \: Amount = P(1 +  \dfrac{r}{100}  )^{n}

 \sf \: 27783 = P (1 +  \cancel \dfrac{5}{100} ) ^{3}

 \sf \: 27783 =  P (1 +  \dfrac{1}{20} ) ^{3}

 \sf \: 27783 = P  (\dfrac{20 + 1}{20} ) ^{3}

 \sf \: 27783 = P \: \times  \dfrac{21}{20}    \times  \dfrac{21}{20}  \times  \dfrac{21}{20}

 \sf \: 27783 =  \dfrac{9261}{8000} P

 \dfrac{9261 \: P}{8000}  = 27783

 \sf \: P =   \dfrac{27783 \times 8000}{ 9261}

 \sf \: P = 3 \times 8000

\boxed{\boxed{Principal=\: Rs\:24000}}

Answered by Anonymous
7

   \large\sf \underline{ \underline{ \: Solution \:  :  \:  \:  \: }}

Given ,

Amount (A) = $ 27783

Rate (R) = 5 %

Number of years (n) = 3 years

We know that ,

   \huge{ \star} \:  \: \large\fbox{ \fbox{ \sf \: Amount = P {(1 +  \frac{R}{100} )}^{n}   \: }}

\implies  \sf  27783 =P {(1 +  \frac{5}{100} )}^{3}   \\  \\ \implies  \sf  27783 = P {(1 +  \frac{1}{20} )}^{3}  \\  \\ \implies  \sf  27783 = P { (\frac{20 + 1}{20}) }^{3}  \\  \\ \implies  \sf  27783 = P {( \frac{21}{20} )}^{3}  \\  \\\implies  \sf 27783 = P \times  \frac{9261}{8000}  \\  \\ \implies  \sf P  \times 9261= 27783 \times 8000 \\  \\\implies  \sf P =  \frac{222264000}{9261}  \\  \\ \implies  \sf P = 24000

Hence , the required value of principal (P) is $ 24000

Similar questions