Math, asked by priyanshagrawal93, 1 year ago

find the sum of n terms in the series 1.4+3.7+5.10+...........is​

Answers

Answered by sivaprasath
22

Answer:

\frac{n}{2}( 4n^2 + 17n + 21)

Step-by-step explanation:

Given :

To Find the value of :

1  x 4 + 3 x 7 + 5 x 10 + ... (n terms)

___________________________________

Solution :

1 x 4 + 3 x 7 + 5 x 10 ...

⇒ (2(0) + 1) (3(0) +4) + (2(1) + 1) (3(1) + 4) + ...(2(n-1) + 1) (3(n-1) + 4) + (2n + 1) (3n + 4)

\Sigma^n_{x=1} {(2x+1)(3x+4)}

\Sigma^n_{x=1} {6x^2+11x+4}

\Sigma^n_{x=1} {6x^2} + \Sigma^n_{x=1} {11x} + \Sigma^n_{x=1} {4}

6 (\frac{n(n+1)(2n+1)}{6}) + 11 (\frac{n(n+1)}{2}) + 4n

n(n+1)(2n+1) +  \frac{11n(n+1)}{2} + 4n

n(n+1)[2n+1 + \frac{11}{2} ] + 4n

n(n+1)[ \frac{4n + 13}{2} ] + 4n

n[(n+1)( \frac{4n + 13}{2} ) + 4]

n[( \frac{4n^2 + 17n + 13}{2} ) + 4]

n[( \frac{4n^2 + 17n + 21}{2} )]

\frac{n(4n^2 + 17n + 21)}{2}

____________________________________

∴ 1  x 4 + 3 x 7 + 5 x 10 + ... (n terms) = \frac{n}{2}( 4n^2 + 17n + 21)


priyanshagrawal93: can you simplify it
Answered by pgupta78229
0

Answer:

Teri MA ki akh my kg kick gggh

Similar questions