Math, asked by StarTbia, 1 year ago

Find the sum of n terms of the series (4-\frac{1}{n})+(4- \frac{2}{n})+(4- \frac{3}{n})+......

Answers

Answered by VemugantiRahul
2
Hi there!
Here's the answer:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°

Sum of n terms of the series

(4-\frac{1}{n})+(4- \frac{2}{n})+(4- \frac{3}{n})+......

= (4-\frac{1}{n})+(4- \frac{2}{n})+(4- \frac{3}{n})+......n\: terms

= (4+4+4+4+......... n\: terms) -(\frac{1}{n}+ \frac{2}{n} + \frac{3}{n} +........\frac{n}{n})

= 4n - (\frac{1+2+3+.......+n}{n})

= 4n-\frac{n(n+1)}{2n}

= \frac{8n^{2} -n(n+1)}{2n}

= \frac{n(8n-(n+1)}{2n}

=\frac{8n-n-1}{2}

=\frac{7n-1}{2}

•°•°•°•°•°<><><<><>><><>°•°•°•°•°
Answered by mysticd
1
Solution :

Given series :

(4-1/n)+(4-2/n)+(4-3/n) + .....+ n terms

= (4+4+4+...+nterms)-(1/n)[1+2+3+...+nterms]

{ Sum of first n natural numbers=[n(n+1)/2 ]}

= 4n - (1/n)[n(n+1)/2]

= 4n - (n+1)/2

= [ 8n - ( n + 1 ) ]/2

= ( 8n - n - 1 )/2

= ( 7n - 1 )/2

••••
Similar questions