find the sum of numberswhich are divisible by 2 or 3 between 1 and 100(including 100)
Answers
Step-by-step explanation:
haahsysyddyududhdxxxidkf
Sum of the integers that are divisible by 2
= 2+4+6+......+100
2+4+6+......+100=2(1+2+3+....+50)
2+4+6+......+100=2(1+2+3+....+50)=2(50∗51)/2
2+4+6+......+100=2(1+2+3+....+50)=2(50∗51)/2=2550
2+4+6+......+100=2(1+2+3+....+50)=2(50∗51)/2=2550Sum of the integers that are divisible by 3
= 3+6+9+.........+99
3+6+9+.........+99=3(1+2+3+.....+33)
3+6+9+.........+99=3(1+2+3+.....+33)=3(33∗34)/2
3+6+9+.........+99=3(1+2+3+.....+33)=3(33∗34)/2=1683
Now if a numbers which are divisible by 2 or 3 is also divisible by 6
So the sum of integers that are divisible by both 2 and 3
= 6+12+18+.....+96
6+12+18+.....+96=6(1+2+3+...+16)
6+12+18+.....+96=6(1+2+3+...+16)=6∗(16∗17)/2
6+12+18+.....+96=6(1+2+3+...+16)=6∗(16∗17)/2=816
We know that
n(A∩B) = n(A)+n(B) - n(A∪B)
n(A∩B) = n(A)+n(B) - n(A∪B)= 2550 + 1683 - 816
n(A∩B) = n(A)+n(B) - n(A∪B)= 2550 + 1683 - 816= 3417
PLEASE MARK IT BRAINLIEST
FOLLOW ME
THANK YOU