Math, asked by kk3871334, 2 months ago

find the sum of
 \frac{1}{1 - x}  +  \frac{ {x}^{2} }{x - 1}
please answer fast三​

Answers

Answered by Anonymous
21

Step-by-step explanation:

 \large   \color{crimson}{\mathfrak W\mathtt{e  \: know \:  \mathfrak{t}ha\mathfrak{t}}}

  {\sf \pmb {\color{green}{a² - b² = (a + b)(a - b)}}}

  \:  \:  \:  \:\large \sf  \purple{\frac{1}{1 - x} + \frac{ {x}^{2} }{x - 1} } \\ \\ \large \sf    = \:  \:  \:  \:  \:  \frac{1}{1 - x} + \frac{ {x}^{2} }{ - (1 - x)} \\  \\  \large \sf=  \:  \:  \:  \:  \:  \:  \:  \frac{1}{1 - x}   -  \frac{ {x}^{2} }{1 - x} \:  \:  \:  \:  \:  \:    \\ \\   \large \sf   =  \:  \:  \:  \:  \:  \:  \:  \: \:  \   \: \:  \:   \: \frac{1 -  {x}^{2} }{(1 - x)}  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \\ \\    \large \sf =   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \frac{ {(1)}^{2} -  {(x)}^{2}  }{(1 - x)}   \:  \:  \:  \:  \:  \:  \: \\   \\ \large \sf= \:  \:   \:  \:  \:  \:  \:  \frac{(1 + x)\cancel{(1 - x)}}{ \cancel{(1 - x)}} \:   \:  \: \:   \\  \\ \large \sf =  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \underline{ \pmb{{ \pink{1 } \:  \pink{+}  \: \pink x} }}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answered by durgaprasad30622
2

Answer:

here is ur attachment

Step-by-step explanation:

HOPE ITS HELP U

HAVE A NICE DAY

Attachments:
Similar questions