Math, asked by Anonymous, 2 months ago

Find the sum of \left(  \sf{1 - \dfrac{1}{n + 1}} \right)  +  \left(  \sf{1 -  \dfrac{2}{n + 1}} \right)  +  \left(  \sf{1 -  \dfrac{3}{n + 1}} \right) + ... \left(  \sf{1 -  \dfrac{n}{n + 1}}

\bf{Options\; :}

(a) n
(b) \sf{\dfrac{1}{2} n}
(c) (n + 1)
(d) \sf{\dfrac{1}{2}(n + 1)}

Answers

Answered by sharanyalanka7
40

Answer:

Step-by-step explanation:

To Find :-

Sum of :-

\sf\left(1 - \dfrac{1}{n+1}\right)+\left(1-\dfrac{2}{n+1}\right)+\left(1-\dfrac{3}{n+1}\right)+..\left(1-\dfrac{n}{n+1}\right)

Solution :-

\sf\left(1 - \dfrac{1}{n+1}\right)+\left(1-\dfrac{2}{n+1}\right)+\left(1-\dfrac{3}{n+1}\right)+..\left(1-\dfrac{n}{n+1}\right)

\sf= 1-\dfrac{1}{n+1}+1-\dfrac{2}{n+1}+1-\dfrac{3}{n+1}+..1-\dfrac{n}{n+1}

Putting all integers together and all fractions together:-

\sf=1+1+1..+1-\dfrac{1}{n+1}-\dfrac{2}{n+1}-\dfrac{3}{n+1}..-\dfrac{n}{n+1}

\sf= \left(1\times n\right)-\left(\dfrac{1}{n+1}+\dfrac{2}{n+1}+\dfrac{3}{n+1}+..\dfrac{n}{n+1}\right)

Since , Sum of 'n' one's = \sf n\times 1

=n-\left(\dfrac{1+2+3+..n}{n+1}\right)

=n-\dfrac{n(n+1)}{2(n+1)}

[Since, Sum of first 'n' terms = n(n+1)/2]

= n - \dfrac{n}{2}

=\dfrac{2n-n}{2}

= \dfrac{n}{2}

=\dfrac{1}{2}n

Since, option 'b' 1/2 n.

Answered by Anonymous
12

Correct answer is option ( b ) . For explanation , Kindly see the above attachment .

Attachments:
Similar questions