Math, asked by midlaj15, 8 months ago

find the sum of the first 25 term of each of the arithmetic sequences below
11,22,33,...​

Answers

Answered by krishna648
0

Answer:

a=11

d=11

n=25

s=25/2*(22+(25-1)11)

s=25/2*286

s=3075

Answered by Anonymous
7

Answer:

\sf{The \ sum \ of \ first \ 25 \ terms \ is \ 3575.}

Given:

\textsf{The given arithmetic sequence is 11, 22, 33,...}

To find:

\sf{The \ sum \ of \ first \ 25 \ terms.}

Solution:

\sf{The \ given \ arithmetic \ sequence \ is \ 11, \ 22, \ 33,...} \\ \sf{Here, \ a=11 \ and \ d=22-11=11} \\ \\ \\ \boxed{\sf{S_{n}=\dfrac{n}{2}[2a+(n-1)d]}} \\ \\ \sf{S_{25}=\dfrac{25}{2}[2(11)+(25-1)\times11]} \\ \\ \sf{\therefore{S_{25}=\dfrac{25}{2}[2(11)+24\times11]}} \\ \\ \sf{\therefore{S_{25}=25[11+12\times11]}} \\ \\ \sf{\therefore{S_{25}=25\times143}} \\ \\ \sf{\therefore{S_{25}=3575}} \\ \\ \purple{\tt{\therefore{The \ sum \ of \ first \ 25 \ terms \ is \ 3575.}}}

____________________________

Extra information:

\sf{\leadsto{t_{n}=a+(n-1)d}} \\ \\ \sf{\leadsto{S_{n}=\dfrac{n}{2}[t_{1}+t_{n}]}} \\ \\ \sf{\leadsto{2\times \ t_{2}=t_{1}+t_{3}}}

Similar questions