Math, asked by VεnusVεronίcα, 2 months ago

Find the sum of the first 25 terms of an A.P. whose nth term is given by tₙ = 2 – 3n.


☀️ Don't spam!
☀️ No plagiarized stuff.
☀️ Proper explaination's needed!​

Answers

Answered by suraj5070
156

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Find\: the\: sum\: of\: the\: first \:25 \:terms\: of \:an \:A.P.\\\tt whose \:n\:th\: terminal\: is \:given \:by \:t_n= 2 – 3n.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf n\:th \:term\: of\: an\: A.P=2-3n

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf Sum\: of\: the\: first \:25 \:terms \:of \:this\: A.P

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\pmb {\bf {Sum\: of\: the\: first \:25 \:terms \:of \:this\: A.P}}}}}

 {\leadsto{\orange{\sf {When \:n=1}}}}

 \bf \implies t_1=2-3\big(1\big)

 \bf \implies t_1=2-3

 \implies {\blue {\boxed {\boxed {\purple {\sf {t_1=-1}}}}}}

 \\

 {\leadsto{\orange{\sf {When \:n=25}}}}

 \bf \implies t_1=2-3\big(25\big)

 \bf \implies t_1=2-75

 \implies {\blue {\boxed {\boxed {\purple {\sf {t_1=-73}}}}}}

 \\

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {S_n=\dfrac{n}{2}\big[t+t_n\big]}}}}}}}

  •  \sf S_n=sum\: of\: the \:n\: terms
  •  \sf t=1\:st\:term\:of\: the \:A.P
  •  \sf t_n=n\:th\:term\:of\: the \:A.P

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies S_{25}=\dfrac{25}{2}\Big[-1+\big(-73\big)\Big]

 \bf \implies S_{25}=\dfrac{25}{2}\Big[-1-73\Big]

 \bf \implies S_{25}=\dfrac{25}{2}\times -74

 \bf \implies S_{25}=\dfrac{25}{\cancel{2}}\times \cancel{-74}

 \bf \implies S_{25}=25\times - 37

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {S_{25}=-925}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\pmb {\sf {{\therefore} The\:sum\: of\: the\: first \:25 \:terms \:of \:this\: A.P\:is\:-925}}}}}}}}}

___________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

{\pink {\bf {Formulas}}}

 \sf a_n=a+(n-1)d

 \sf S_n=\dfrac{n}{2}[t+t_n]

 \sf S_n=\dfrac{n}{2}\big[2t+(n-1)d\big]

Answered by CopyThat
13

Answer:

  • -925 is the sum of first 25 terms of the A.P whose nth term is given by tₙ = 2-3n.

Step-by-step explanation:

Given:

  • nth term of the A.P tₙ = 2-3n.

To find:

  • Sum of the first 25 terms.

Solution:

Let's find the first (initial terms of the A.P)

n = 1

  • 2 - 3(1) = -1 (a1)

n = 2

  • 2 - 3(2) = -4 (a2)

n = 3

  • 2 - 3(3) = -7 (a3)

Clearly, common difference:

  • a2 - a1
  • -4 - (-1)
  • -3

Sum of n terms of an A.P is given by:

Sₙ = n/2[2(a) + (n-1)d]

  • S₂₅ = 25/2[2(-1) + (25-1)-3]
  • S₂₅ = 25/2[-2 + 24(-3)]
  • S₂₅ = 25/2[-2 - 72]
  • S₂₅ = 25/2(-74)
  • S₂₅ = -925

∴ The sum of first 25 terms of the A.P whose nth term is given by tₙ = 2-3n is -925.

Similar questions