Math, asked by kanand0405, 11 months ago

find the sum of the n term in the A.P root2 , 2root2, 3root2 .......................​

Answers

Answered by mysticd
6

 \sqrt{2} ,\:2\sqrt{2} ,\:3\sqrt{2} ,\cdot\cdot\cdot , is \: an \: A.P

 First \:term (a) = \sqrt{2}

 Common \: difference (d) = a_{2} - a_{1} \\= 2\sqrt{2} - \sqrt{2} \\= \sqrt{2}

 \boxed { \pink { Sum \: of \: n \: terms (S_{n}) = \frac{n}{2} [ 2a + (n-1)d ] }}

 S_{n} = \frac{n}{2} [ 2\times \sqrt{2} + ( n - 1) \times \sqrt{2} ] \\= \frac{\sqrt{2}n}{2} [ 2 + n - 1] \\= \frac{\sqrt{2}n}{2} (n + 1)

Therefore.,

 \red{ Sum \: of \: n \: terms (S_{n})}\green { = \frac{\sqrt{2}n}{2} (n + 1)}

•••♪

Similar questions