Math, asked by aswathysh27, 2 months ago

Find the sum of the series 5²+6²+7²+...+20²?​

Answers

Answered by UtsavPlayz
5

 {5}^{2}  +  {6}^{2}  +  {7}^{2}  + ... +  {20}^{2}

By Using,

 \displaystyle \sum\limits_{k=1}^{n} k^2 =  \dfrac{n(n + 1)(2n + 1)}{6}

We get,

\displaystyle \sum\limits_{k=5}^{20} k^2 = \displaystyle \sum\limits_{k=1}^{20} k^2 - \displaystyle \sum\limits_{k=1}^{4} k^2

\displaystyle \sum\limits_{k=1}^{n} k^2 =  \dfrac{20 \cdot 21 \cdot 41}{6}  -  \dfrac{4 \cdot 5 \cdot  9 }{6}

\displaystyle \sum\limits_{k=5}^{20} k^2 =  2870  - 30 =  \boxed{2840}

Similar questions