Math, asked by saanvigundu599, 9 months ago

Find the sum of the zero of the
quadratic
polynomiay x²+7x+12​

Answers

Answered by Anonymous
5

Answer:

Given:- The polynomial is x² + 7x + 12

To find : The sum and product of zeroes of the polynomial.

solution:-

First of all we have to find out the zeroes of the p(x).

here ,

⇒ a = 1

⇒b = 7

⇒c = 12

⇒p( x ) = x² + 7x + 12

⇒p ( x ) = 0

⇒ x² + 7x + 12 = 0

⇒ x² + ( 4 + 3 ) x + 12 =0

⇒x² + 4x + 3x + 12 = 0

⇒x ( x + 4 ) + 3 ( x + 4 ) = 0

⇒( x + 4 ) ( x + 3 ) = 0

so , Either

↦( x + 4 ) = 0

↦ x = -4

or,

↦( x + 3 ) = 0

↦x = -3

. • . The zeroes are -4 , -3

Now ,

let, the Zeroes be α ,β

so, α = -4 , β = -3

\therefore{Sum \:Of \:the \:Zeroes(α+β)}

= -4 + ( -3)

= -4 -3

= -7

=  \frac{-7 }{1}

= -7

=  \frac{-b}{a}

=  \frac{- Coefficient \:Of \:x}{Coefficient \:Of \:x²}

\therefore{product \:of \:the \:zeroes(αβ)}

= -4 × -3

= 12

=  \frac{12}{1}

= 12

=  \frac{c}{a}

=  \frac{Constant \:term}{Coefficient \:Of \:x}

Note:

For quadratic Equation Or polynomial-

Formulla to find the sum of zeroes is

= -Coefficient of x / coefficient of x²

= - b / a

Formulla to find the product of zeroes

= constant term / coefficient of x

= c / a

Answered by royalelena541
2

Answer:

Step-by-step explanation:

Let f(x)=x^{2} +7x+12

x^{2} +3x+4x+12                                   {12=3*4}

                                                               {7=3+4}

(x^{2} +3x)+(4x+12)\\x(x+3) +4 (x+3)\\(x+3) (x+4)\\either ,\\x+3=0 \\x=-3\\x+4=0\\x=-4

zeros = -3, -4

α= -3 ,β= -4

f(x)=x^{2} +7x+12

   =  1x^{2} +7x+12

comparing with ax^{2}+bx+c

so , a=1 , b=7 , c=12

now finding sum of zeros

Sum of zero = \frac{-b}{a}

α +β = \frac{-b}{a}

-3+(-4)=\frac{-7}{1}

-7=-7

product of zeros =  \frac{c}{a}

α*β=\frac{c}{a}

(-3)(-4)=\frac{12}{1}

12=12

Hope it will help you

plzzzz..... mark my answer as brainliest

Similar questions