Physics, asked by shantanumahato84642, 24 days ago

Find the sum of vector 10i cap plus 6jcap and 4icap -2jcap

Answers

Answered by YourHelperAdi
2

Given :

\displaystyle \rm  \bull  \overrightarrow{A} = 10 \hat{i} + 6\hat{j }

\displaystyle \rm \bull  \overrightarrow{B} = 4 \hat{i} - 2 \hat{j}

To Find :

 \displaystyle \rm  \overrightarrow{A}  + \overrightarrow{B}

Formula To Be Applied:

 \bull \displaystyle \rm ( x \hat{i} + y \hat{j}) + ( a \hat{i} + b \hat{j}) = (x + a) \hat{i} +  ( y + b) \hat{j}

Solution:

Let, the Resultant be :

 \displaystyle \rm    \overrightarrow{r} = \overrightarrow{A}  + \overrightarrow{B}

so, we get that :

 \implies \displaystyle \rm    \overrightarrow{r} = \overrightarrow{A}  + \overrightarrow{B}

 \implies \displaystyle \rm    \overrightarrow{r} =( 10 \hat{i} + 6 \hat{j} )+ (4 \hat{i}  - 2 \hat{j})

 \implies \displaystyle \rm    \overrightarrow{r} =( 10  + 4) \hat{i}+ (6 - 2) \hat{j}

 \red{ \underline{ \boxed{ \implies \displaystyle \rm    \overrightarrow{r} = 14 \hat{i}+ 4\hat{j}}}}

So, the sum of the vectors is :

 \displaystyle \rm  \overrightarrow{A}  + \overrightarrow{B} = 14 \hat{i} + 4 \hat{j}

Similar questions