Find the sum of x minus and why minus Intercept line 4 x minus 5y is equals to 20
Answers
Step-by-step explanation:
Given:
\text{Equation of line is}\;4x-5y=20Equation of line is4x−5y=20
\textbf{To find:}To find:
\text{The sum of x and y intercepts}The sum of x and y intercepts
\textbf{Solution:}Solution:
\text{Consider,}Consider,
4x-5y=204x−5y=20
\text{Divide bothsides by 20, we get}Divide bothsides by 20, we get
\dfrac{4x}{20}-\dfrac{5y}{20}=\dfrac{20}{20}
20
4x
−
20
5y
=
20
20
\dfrac{x}{5}-\dfrac{y}{4}=1
5
x
−
4
y
=1
\dfrac{x}{5}+\dfrac{y}{(-4)}=1
5
x
+
(−4)
y
=1
\text{Comparing this equation with}Comparing this equation with
\boxed{\bf\dfrac{x}{a}+\dfrac{y}{b}=1}
a
x
+
b
y
=1
\text{we get}we get
\text{x-intercept,}\;a=5x-intercept,a=5
\text{y-intercept,}\;b=-4y-intercept,b=−4
\text{Sum of the intercepts}Sum of the intercepts
=a+b=a+b
=5+(-4)=5+(−4)
=1=1