Math, asked by rskkashyap24, 11 months ago

find the sum of zeroes of polynomial 3x²-7

Answers

Answered by njk81
15

The given polynomial is 3x^2- 7

( 3x^2+0x-7)

a=3

b=0

c=(-7)

Sum of zeroes

@+B

= -b/a

= -coefficient of x/ coefficient of x^2

= -0/3

= 0


rskkashyap24: thank you
Answered by payalchatterje
1

Answer:

Sum of zeroes of given polynomial is 0.

Step-by-step explanation:

Given polynomial is

 \: f(x) = 3 {x}^{2}  - 7...........(1)

Now,

f(x) = 0

3 {x}^{2}  - 7 = 0

Dividing by 3 in both side,

 \frac{3 {x}^{2} }{3}  -  \frac{7}{3}  = 0

 {x}^{2}  -  \frac{7}{3}  = 0

 {x}^{2}  -  { (\frac{ \sqrt{7} }{ \sqrt{3} })}^{2}   = 0

We know,

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

Here,

a = x \:  \:  \: and \:  \: b =  \frac{ \sqrt{7} }{ \sqrt{3} }

So,

 {x}^{2}  -  { (\frac{ \sqrt{7} }{ \sqrt{3} })}^{2}   = (x -  \frac{ \sqrt{7} }{ \sqrt{3}} )(x +  \frac{ \sqrt{7} }{ \sqrt{3} } ) = 0

We know if multiplication of two term is zero then they are separately zero.

(x -  \frac{ \sqrt{7} }{ \sqrt{3} } ) = 0

x =  \frac{ \sqrt{7} }{ \sqrt{3} }

And,

(x +  \frac{ \sqrt{7} }{ \sqrt{3} } ) = 0

x =  -  \frac{ \sqrt{7} }{ \sqrt{3} }

Sum of zeros=

 \frac{ \sqrt{7} }{ \sqrt{3} }  + ( -  \frac{ \sqrt{7} }{ \sqrt{3} } )

 \frac{ \sqrt{7} }{ \sqrt{3} }  -  \frac{ \sqrt{7} }{ \sqrt{3} }  = 0

Required sum is 0.

Similar questions