Find the sum to n terms
i) 0.9+0.99+0.999+...
ii) 0.5+0.55+0.555+...
Answers
2, 0.5+0. 55+0.555 = 1.805
Answer:
i)
ii)
Step-by-step explanation:
We have to find the sum of the GP
i) 0.9+0.99+0.999+...
(1 - 0.1)+(1 - 0.01)+(1 - 0.001)+(1 - 0.0001)+..........
= (1+1+1+1+....... n) +( -0.1-0.01-0.001- .........)
= (1 × n) - (0.1 + 0.01 + 0.001 + 0.0001 + .........) ....(1)
Formula of geometric sum upto n terms, where a = first term, r = common ratio of GP:
0.1 + 0.01 + 0.001 + 0.0001 + .........
a = 0.1, r = 0.1
Put the value in equation (1)
is the sum of the given GP
ii) 0.5+0.55+0.555+...
5(0.1 + 0.01 + 0.001 + ...........) ....(1)
Now multiply equation (1) by 9/9
5/9(0.9+0.99+0.999+........)
5/9[(1 - 0.1)+(1 - 0.01)+(1 - 0.001)+(1 - 0.0001)+..........]
5/9[(1+1+1+1+....... n) +( -0.1-0.01-0.001- .........)]
5/9[(1 × n) - (0.1 + 0.01 + 0.001 + 0.0001 + .........)] ....(2)
Formula of geometric sum upto n terms, where a = first term, r = common ratio of GP:
0.1 + 0.01 + 0.001 + 0.0001 + .........
a = 0.1, r = 0.1
Put the value in equation (2)
is the sum of the given GP