Math, asked by VijayHariharan, 1 year ago

find the sum to n terms of the series 5+55+555+...

Answers

Answered by caylus
2

Hello,

 u_1=5\\<br /><br />u_2=55=10*5+5=10*5+5=5(10+1)=5\dfrac{10^2-1}{10-1}=\dfrac{5}{9}*(10^2-1)\\<br /><br />u_3=555\\<br />=10*55+5\\<br />=10*u_2+5\\<br />=10*\dfrac{5}{9}*(10^2-1)+5\\<br />=\dfrac{5}{9}(10^3-10+9)\\<br />=\dfrac{5}{9}(10^3-1)\\\\<br /><br />...\\\\<br /><br />\boxed{u_n=\dfrac{5}{9}(10^n-1)}\\<br />

 v_1=u_1=5\\<br />v_2=u_1+u_2=5+55=60\\<br />v_3=u_1+u_2+u_3=60+555=615\\<br />...\\\\<br />v_n=\sum_{i=1}^n\ u_i\\<br /><br />=\sum_{i=1}^n\ \dfrac{5}{9}\ (10^i-1)\\ <br /><br />=\dfrac{5}{9}\ \sum_{i=1}^n\ (10^i-1)\\ <br /><br />=\dfrac{5}{9}\ (\sum_{i=1}^n\ 10^i\ -n )\\ <br /><br />=\dfrac{5}{9}\ (10*\sum_{j=0}^{n-1}\ 10^j\ -n )\\ <br /><br />=\dfrac{5}{9}\ (10*\dfrac{10^n-1}{10-1} -n )\\ <br /><br />=\dfrac{5}{9^2}\ (10^{n+1}-10 -9n )\\ <br /><br /><br />\boxed{v_n=\dfrac{5}{9^2}\ (10^{n+1} -9(n+1) -1 )}\\ <br />

Proof:

if n=1 then v_1=5/81 *(10²-9*2-1)=5/81*81=5


if n=2 then v_2=5/81*(10^3-9*3-1)5/81*972=5*12=60




Answered by mathdude500
0

Answer:

\boxed{\sf \: 5 + 55 + 555 + 5555 + .. \: n \: terms  =  \: \dfrac{5}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \: } \\

Step-by-step explanation:

Given series is

\sf \: 5 + 55 + 555 + 5555 + ... \: n \: terms \\  \\

\sf \:  =  \: 5(1 + 11 + 111 + 1111 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{5}{9} (9 + 99 + 999 + 9999 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{5}{9} [(10 - 1) + (100 - 1) + (1000 - 1)  + ... \: n \: terms]\\  \\

\sf \:  =  \: \dfrac{5}{9}[ 10 + 100 + 1000 + .. \: n \: terms) - (1 + 1 + 1 + .. \: n \: terms)] \\  \\

We know,

Sum of n terms of a GP series having first term a and common ratio r is given by

\begin{gathered}\begin{gathered}\bf\: S_n = \begin{cases} &amp;\sf{\dfrac{a( {r}^{n} - 1) }{r - 1} }, \:  \: r \:  \ne \: 1 \\ \\  &amp;\sf{\qquad \: na, \:   \:  \: \: r = 1} \end{cases}\end{gathered}\end{gathered} \\  \\

So, using these results, we get

\sf \:  =  \: \dfrac{5}{9}\left[\dfrac{10( {10}^{n}  - 1)}{10 - 1}  - n \times 1 \right] \\  \\

\sf \:  =  \: \dfrac{5}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Hence,

\implies\sf \: 5 + 55 + 555 + 5555 + .. \: n \: terms  =  \: \dfrac{5}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Similar questions