Math, asked by riya41314, 1 year ago

find the sum to n yerms of the series o.4+o.44+o.444...to n terms​

Answers

Answered by sivaprasath
0

Answer:

0.4 + 0.44 + 0.444 + 0.44...(upto n terms) = \frac{4}{9}(n - (\frac{1 - (0.1)^n}{9} )

Step-by-step explanation:

Given :

To find the sum to n yerms of the series 0.4 + 0.44 + 0.444...to n terms​,.

Solution :

⇒ 0.4 + 0.44 + 0.444...to n terms

⇒ 4 (0.1 + 0.11 + 0.111...)

multiplying & dividing by 9,

We get,

\frac{4}{9}(9) (0.1 + 0.11 + 0.111...)

\frac{4}{9}(0.9 + 0.99 + 0.999...)

\frac{4}{9}((1 - 0.1) + (1 - 0.01) + ...) n terms

⇒  \frac{4}{9}((1 - 0.1) + (1 - (0.1)^2) +(1-(0.1)^3) + ...) n terms

\frac{4}{9}(n - ( (0.1) + (0.1)^2 + (0.1)^3 + ...)

By using the formula,

S_n = a\frac{1-r^n}{1-r}

\frac{4}{9}(n - ( (0.1) + (0.1)^2 + (0.1)^3 + ...)

\frac{4}{9}(n - ((0.1)\frac{1 - (0.1)^n}{1 - 0.1} )

\frac{4}{9}(n - ((0.1)\frac{1 - (0.1)^n}{0.9} )

\frac{4}{9}(n - (\frac{1 - (0.1)^n}{9} )

Similar questions