Math, asked by anusiby2137, 1 year ago

Find the sum which amounts to rs 1352 in 2 years at 4% compound interest

Answers

Answered by 2025whatleyjordan
4

Answer:

Step-by-step explanation:

Amount (A) = 1352 RS

Time(n) = 2 years

Rate = 4%

Amount = P ( 1+\frac{r}{100} )^{n}

1352 = P (1+ \frac{4}{100}) ^{2}

1352 = P (1+\frac{1}{25} )^{2}

1352 = P (\frac{26}{25} )^{2}

P= 1352×25× 25/26×26

p= 845000/676

P= 1250 RS

Answered by Anonymous
166

Given :-

  • Amount (A) = Rs.1352

  • Time (n) = 2 years

  • Rate (r) = 4%

To Find:-

  • Principal = ?

Solution:-

The formula used to find Amount is:-

\sf :\implies Amount = P\bigg(1 + \dfrac{r}{100}\bigg)^{n}

Substituting the values:-

\sf \red{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:{Amount = P\bigg(1 + \dfrac{r}{100}\bigg)^{n}}}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies 1352= P\bigg(1 + \dfrac{4}{100}\bigg)^{2}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  1352= P\bigg( \dfrac{100 + 4}{100}\bigg)^{2}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  1352= P\bigg( \dfrac{104}{100}\bigg)^{2}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  1352= P\bigg( \dfrac{26}{25}\bigg)^{2}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  1352= P\times \dfrac{26 \times 26}{25 \times 25}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies 1352= P \times \dfrac{676}{625}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  P = 1352\times \dfrac{625}{676}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies P =  \dfrac{845000}{676}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \:\red{ \:\::\implies  P = 1250} \\\\

\therefore\:\underline{\textsf{ Principle is  \textbf{Rs 1250}}}.\\

Similar questions