Math, asked by rajan3088, 1 year ago

Find the sum which will amount to Rs 4590 at 12% per annum in 3 years.

Answers

Answered by PegasusPurpose
0

\huge\mathfrak{\underline{solution}}

let , the sum is = P Rs

Given

time(t)= 3 years

sum \: with \: interest( \bf{P}_{I}) = 4590

rate of interest (r)= 12%

Compound interest

 \large{ \underline{USING \: FORMULA}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large{\boxed{P_I=  P(1+\frac{r}{100}){}^{t}}}

So, putting the values

\large\implies \large{P_I=  P(1+\frac{r}{100}){}^{t}} \\   \large\implies4590 =  P(1 +  \frac{12}{100} ) {}^{3}  \\   \large\implies 4590 = P( \frac{112}{100} ) {}^{3}  \\  \large\implies4590 \times  (\frac{100}{112} ) {}^{3}  = P  \\ \large\implies P  = 3267.07 \:Rs\: (approx)

❍Simple interest

 \large{ \underline{USING \: FORMULA}}

\large{\boxed{I=   \frac{Prt}{100} }}  \implies \large{\boxed{ P_I = P +   \frac{Prt}{100} }}

So, putting the values

 \implies 4590 = </p><p>P +  \frac{P \times 12 \times 3}{100}  \\  \implies4590 = P(1 +  \frac{36}{100} ) \\   \implies p = 4590 \times  \frac{100}{112}  \\   \implies P = 4098.2  \: Rs\: (approx)

Hope this helps you....

Similar questions