Math, asked by AnuragNayak7679, 11 months ago

Find the surface areas of the cuboids whose dimensions are l=25cm, b=12cm, h,=10cm

Answers

Answered by ksai91215
3

Answer:

given that l=25,b=12,h=10

TSA of cuboids=2(lb+bh+lh)

=>2(25*12+12*10+10*25)

=>2(300+120+250)

=>2(670)

=>1340cm^2

then LSA of cuboids =2h(l+b)

=>2*10(25+12)

=>2*10(37)

=>20*37=740cm^2

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{T.S.A\:of\:cuboid=1340\:cm}^{2}}}

\green{\therefore{\text{L.S.A\:of\:cuboid=740\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline\bold{given:}}\\ :\implies\text{Length(l)=25\: cm}\\\\ :\implies\text{Breadth(b)=12\:cm}\\\\ :\implies\text{Height(h)=10\:cm}\\\\\red{\underline\bold{to\:find:}}\\ :\implies\text{T.S.A \: of \: cuboid=?}

•  According to given question :

\bold{as \: we \: know \: that} \\ :\implies\text{T.S.A \: of \: cuboid} =2(lb + bh + hl) \\\\ :\implies\text{T.S.A\:of\:cuboid} = 2(25\times12+12\times10+10\times25)\\\\ :\implies\text{T.S.A \: of \: cuboid}=2(300+ 120 + 250) \\\\ :\implies\text{T.S.A \: of \: cuboid}=2\times670\\\\ \green{:\implies\text{T.S.A\:of\:cuboid=1340\:{cm}}^{2}}\\\\\bold{as \: we \: know \: that} \\ :\implies\text{L.S.A \: of \: cuboid} =2(l+b)\times h \\\\ :\implies\text{L.S.A\:of\:cuboid} = 2(25+12)\times 10\\\\ :\implies\text{L.S.A \: of \: cuboid}=2\times 37\times 10 \\\\ :\implies\text{L.S.A \: of \: cuboid}=2\times370\\\\ \green{:\implies\text{L.S.A\:of\:cuboid=740\:{cm}}^{2}}

Similar questions