Math, asked by aarus92901, 6 months ago

Find the T.S.A of the cuboid whose dimensions are 8 cm, 3 cm and 2 cm respectively.

Answers

Answered by memerO5
0

Answer:

[(l×w)+( l×h)+(h×w)]×2

Step-by-step explanation:

8×2=16

8×3=24

2×3=6

16+24+6=46

46×2=92cm3

Answered by INSIDI0US
2

Step-by-step explanation:

Question :-

  • Find the TSA of the cuboid whose dimensions are 8 cm, 3 cm, and 2 cm respectively.

To Find :-

  • TSA of cuboid.

Solution :-

Given :

  • Length = 8 cm
  • Breadth = 3 cm
  • Height = 2 cm

By using the formula,

{\sf{\longrightarrow TSA\ of\ cuboid\ =\ 2(lb\ +\ bh\ +\ hl)}}

Where,

  • l = length
  • b = breadth
  • h = height

According to the question, by using the formula, we get :

{\sf{\longrightarrow TSA\ of\ cuboid\ =\ 2(lb\ +\ bh\ +\ hl)}}

{\sf{\longrightarrow 2(8 \times 3\ +\ 3 \times 2\ +\ 2 \times 8)}}

{\sf{\longrightarrow 2(24\ +\ 6\ +\ 16)}}

{\sf{\longrightarrow 2(46)}}

{\sf{\longrightarrow 2 \times 46}}

{\sf{\longrightarrow 92\ cm^2}}

\therefore Hence, TSA of cuboid is 92 cm².

More To Know :-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Similar questions