Math, asked by dharshinirajii6, 3 months ago

Find the Taylor's series expansion of e x + y  in powers of x and y up to second degree terms.​

Answers

Answered by ushmagaur
0

Answer:

The Taylor series expansion of e^{x+y} up to second degree terms is f(x,y)=1+x+y+\frac{x^2}{2}+xy+\frac{y^2}{2} in powers of x and y.

Step-by-step explanation:

The 2^{nd}-degree Taylor series expansion of f(x,y) about the origin is

f(x,y)=f(0,0)+f_x(0,0)(x-0)+f_y(0,0)(y-0)+\frac{f_{xx}(0,0)}{2} (x-0)^2

              +f_{xy}(0,0)(x-0)(y-0)+\frac{f_{yy}(0,0)}{2} (y-0)^2

f(x,y)=f(0,0)+xf_x(0,0)+yf_y(0,0)+x^2\frac{f_{xx}(0,0)}{2}+xyf_{xy}(0,0)

              +y^2\frac{f_{yy}(0,0)}{2}  ...... (1)

Consider the function as follows:

f(x,y)=e^{x+y}

f(x,y)=e^xe^y

f(0,0)=e^0e^0

              =1

Compute f_x(0,0) as follows:

f_x(x,y)=\frac{\partial }{\partial x} (e^xe^y)

            =e^y\frac{\partial }{\partial x} (e^x)

            =e^ye^x

f_x(0,0)=e^0e^0

            =1

Compute f_y(0,0) as follows:

f_y(x,y)=\frac{\partial }{\partial y} (e^xe^y)

            =e^xe^y

f_y(0,0)=e^0e^0

            =1

Similarly,

Compute f_{xx}(0,0), f_{xy}(0,0), f_{yy}(0,0) as follows:

f_{xx}(x,y)=\frac{\partial^2 }{\partial x^2} (e^xe^y)

            =e^xe^y

f_{xx}(0,0)=1

f_{xy}(x,y)=\frac{\partial^2 }{\partial x \partial y} (e^xe^y)

            =e^xe^y

f_{xy}(0,0)=1

f_{yy}(x,y)=\frac{\partial^2 }{\partial y^2} (e^xe^y)

            =e^xe^y

f_{yy}(0,0)=1

From (1), we get

f(x,y)=1+x(1)+y(1)+x^2\frac{1}{2}+xy(1)+y^2\frac{1}{2}

f(x,y)=1+x+y+\frac{x^2}{2}+xy+\frac{y^2}{2}

Therefore, the Taylor series expansion is f(x,y)=1+x+y+\frac{x^2}{2}+xy+\frac{y^2}{2}.

#SPJ6

Similar questions