Physics, asked by tanishgupta8625, 7 months ago

Find the tension in the string and acceleration of both blocks ?​

Attachments:

Answers

Answered by Anonymous
56

 \\ {\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{ Angle \: of \: edge =  \theta}

\:\:\:\:\bullet\:\:\:\sf{Mass \: of \: blocks =  m_{1} \: and \:  m_{2} }

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Tension \: in \: the \: string }

\:\:\:\:\bullet\:\:\:\sf{Acceleration \: of \: both \: blocks}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\sf\underline{For \: mass \: of \: block( m_{1}) }

\\

\dashrightarrow\:\: \sf{ m_{1}g - T=  m_{1}a ..... (1)   }

\\

\sf\underline{For \: mass \: of \: block( m_{2}) }

\\

\dashrightarrow\:\: \sf{  \dfrac{T}{2}  -  m_{2}g  \: sin \:  \theta =  \dfrac{m_{2}a}{2} }

\\

\dashrightarrow\:\: \sf{T - 2 m_{2}g \: sin  \:  \theta =  m_{2}a ..... (2) }

\\

Adding both (1) & (2)

\\

\dashrightarrow\:\: \sf{ m_{1}g - 2 m_{2}g \: sin \:  \theta =  m_{1}a  +  m_{2}a }

\\

\dashrightarrow\:\: \sf{ (  m_{1} -  m_{2} \: sin \:  \theta)g =( m_{1} +  m_{2})a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{(  m_{1} -  m_{2} \: sin \:  \theta)g}{ (m_{1}  +   m_{2}) }  }

\\

Putting "a" value in (2)

\\

\dashrightarrow\:\: \sf{T - 2 m_{2}g \: sin  \:  \theta =  m_{2} \times  \dfrac{( m_{1} -  m_{2}g \: sin \:  \theta )g }{ m_{1} +  m_{2}  }  }

\\

\dashrightarrow\:\: \sf{T=  \frac{( m_{1} -  m_{2}g \: sin \:  \theta ) m_{2} g}{ m_{1} +  m_{2} }  + 2 m_{2}g \: sin \:  \theta} \\

Attachments:
Similar questions