Math, asked by heysumanth, 1 year ago

Find the term 5, 22, ?, 140, 265

Answers

Answered by ankurbadani84
1

Answer:

63

Step-by-step explanation:

Let x be the Number

5               22              x                140                 265

   17                  x-22         140-x           125

         x-39                162-2x         x-15

                  162-3x+39         3x-15-162

Now, for sequence to converge,

162 - 3x + 39 = 3x - 15 - 162

Therefore, 201 - 3x = 3x -177

Therefore, 6x = 378

Therefore, x = 63

So, missing number is 63. Series will converge at 4th level with it.

Answered by slicergiza
1

Answer:

The missing number is 63.

Step-by-step explanation:

Here the sequence is,

5, 22, ?, 140, 265,

Suppose n be the missing number,

So, the sequence is,

5, 22, n, 140, 265

In a logical sequence the final difference in the consecutive terms is always equal ( if all terms of sequence are given ),

First difference : 22 - 5, n - 22, 140, - n, 265 - 140

Second difference : (n-22)-(22-5), (140-n)-(n-22), (265-140)-(140-n)

Final difference : [(140-n)-(n-22)]-[(n-22)-(22-5)], [(265-140)-(140-n)]-[(140-n)-(n-22)]

By the above statement,

[(140-n)-(n-22)]-[(n-22)-(22-5)] = [(265-140)-(140-n)]-[(140-n)-(n-22)]

140 - n - n + 22 - n + 22 + 22 - 5 = 265 - 140 - 140 + n - 140 + n + n - 22

201 - 3n = -177 + 3n

⇒ 6n = 378 ⇒ n =  63

Therefore, the missing number is 63.

Similar questions