Math, asked by pankhurithawkar, 4 months ago

find the term independent of x in the expansion of (3x^2-1/2x^3)^10
PLEASE SEND COMPLETE SOLUTION!!!!​

Answers

Answered by shadowsabers03
6

The (r+1)^{th} term in the expansion of \left(3x^2-\dfrac{1}{2x^3}\right)^{10} is,

\displaystyle\longrightarrow T_{r+1}=\,^{10}C_r\,(3x^2)^{10-r}\left(-\dfrac{1}{2x^3}\right)^r

\displaystyle\longrightarrow T_{r+1}=(-1)^r\cdot\,^{10}C_r\,3^{10-r}x^{2(10-r)}\cdot\dfrac{1}{2^rx^{3r}}

\displaystyle\longrightarrow T_{r+1}=(-1)^r\cdot\,^{10}C_r\,3^{10-r}x^{20-5r}\cdot\dfrac{1}{2^r}

For getting term independent of x, the exponent of x should be 0.

\longrightarrow 20-5r=0

\longrightarrow r=4

Hence 5th term is independent of x and is,

\displaystyle\longrightarrow T_5=(-1)^4\cdot\,^{10}C_4\cdot3^{10-4}\cdot\dfrac{1}{2^4}

\displaystyle\longrightarrow\underline{\underline{T_5=\dfrac{76545}{8}}}

Similar questions