Math, asked by yashbansal83, 1 year ago

find the term independent of x in the expansion of {√x/√3+√3/2x square} power 10..

Answers

Answered by sprao534
5
Please see the attachment
Attachments:
Answered by mysticd
2

 Given \: \Big( \sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^{2}} \Big)^{10}

 We \:know \:that , \\General \: term \: in \:the \: expansion \: of \: (x+a)^{n} \: is :

 \pink { t_{(r+1)} = ^{n}C_{r}\times  x^{n-r} \times a^{r} }

 Here , t_{(r+1)} = ^{10}C_{r}\times  \Big(\sqrt{\frac{x}{3}}\Big)^{10-r} \times \Big( \frac{\sqrt{3}}{2x^{2}}\Big)^{r}

 = ^{10}C_{r}\times \Big( \frac{1}{\sqrt{3}}\Big)^{10-r} \times \Big( \frac{\sqrt{3}}{2}\Big)^{r} \times (\sqrt{x})^{10-r} \times x^{-2r}

 = ^{10}C_{r}\times \Big( \frac{1}{\sqrt{3}}\Big)^{10-r} \times \Big( \frac{\sqrt{3}}{2}\Big)^{r} \times (x)^{\frac{10-r}{2}-2r}

 Now, (x)^{\frac{10-r}{2}-2r} = x^{0} \\\blue { (Term \: independent )}

 \implies \frac{10-r}{2}-2r = 0

 \implies \frac{10-r-4r}{2} = 0

 \implies 10-5r= 0

 \implies -5r= -10

 \implies r=\frac{ -10}{-5}

 \implies r = 2

 The \: term \: independent \: of \: x \: in \:the \\expansion \: of \: \Big( \sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^{2}} \Big)^{10}

 = t_{2+1}

 = ^{10}C_{2}\times \Big( \frac{1}{\sqrt{3}}\Big)^{10-2} \times \Big( \frac{\sqrt{3}}{2}\Big)^{2}\\= ^{10}C_{2}\times \Big( \frac{1}{\sqrt{3}}\Big)^{8} \times \Big( \frac{\sqrt{3}}{2}\Big)^{2}\\= ^{10}C_{2}\times \frac{1}{3^{4}} \times \frac{3}{4} \\=  ^{10}C_{2}\times \frac{1}{3^{3\times 4}}

•••♪

Similar questions