Math, asked by lprasanna9573, 1 month ago

Find the the rank of matrix 0 1 -3 -1
1 0 1 1
3 1 0 2
1 1 -2 0​

Answers

Answered by AbhinavRocks10
6

Inverse of Given matrix is \begin{gathered}\left[\begin{array}{ccc} \frac{-1}{5}&\frac{2}{5}&\frac{1}{10}\\0&0&\frac{1}{2}\\\frac{1}{5}&\frac{3}{5}&\frac{-1}{10}\end{array}\right]\end{gathered}

Given :

\begin{gathered}\left[\begin{array}{ccc}-3&1&2\\1&0&1\\0&2&0\end{array}\right]\end{gathered}

To Find :

\text{Inverse of matrix}

Formula Applied :

A^{-1}=\frac{1}{|A|}

Solution :

\begin{gathered}Let\:\:A =\left[\begin{array}{ccc}-3&1&2\\1&0&1\\0&2&0\end{array}\right]\end{gathered}

\begin{gathered}|A| = -3\left[\begin{array}{cc}0&1\\2&0\end{array}\right] -1\left[\begin{array}{cc}1&1\\0&0\end{array}\right] +2 \left[\begin{array}{cc}1&0\\0&2\end{array}\right]\end{gathered}

|A|=-3(0-2)-1(0-0)+2(2-0)∣A∣=−3(0−2)−1(0−0)+2(2−0)

|A|=-3(-2)-1(0) +2(2)\implies 6-0+4∣A∣=−3(−2)−1(0)+2(2)

|A| = 10∣A∣=10

\begin{gathered}A= \left[\begin{array}{ccc}-3&amp;1&amp;2\\1&amp;0&amp;1\\0&amp;2&amp;0\end{array}\right]\end{gathered}</p><p> </p><p></p><p>[tex]\begin{gathered}adjA = \left[\begin{array}{cccc}0&amp;1&amp;1&amp;0\\2&amp;0&amp;0&amp;2\\1&amp;2&amp;-3&amp;1\\0&amp;1&amp;1&amp;0 \end{array}\right]^T\end{gathered}

\begin{gathered}adjA=\left[\begin{array}{ccc}(0-2)&amp;(0-0)&amp;(2-0)\\(4-0)&amp;(0-0)&amp;(0+6)\\(1-0)&amp;(2+3)&amp;(0-1)\end{array}\right]^T\end{gathered}

\begin{gathered}adjA = \left[\begin{array}{ccc}-2&amp;0&amp;2\\4&amp;0&amp;6\\1&amp;5&amp;1\end{array}\right] ^T\end{gathered}

\begin{gathered}adj A = \left[\begin{array}{ccc}-2&amp;4&amp;1\\0&amp;0&amp;5\\2&amp;6&amp; -1\end{array}\right]\end{gathered}

A^{-1}=\frac{1}{|A|}

\begin{gathered}A^{-1}= \frac{1}{10}\left[\begin{array}{ccc}-2&amp;4&amp;1\\0&amp;0&amp;5\\2&amp;6&amp; -1\end{array}\right]\end{gathered}

\begin{gathered}A^{-1} = \left[\begin{array}{ccc}\frac{-2}{10}&amp;\frac{4}{10}&amp;\frac{1}{10}\\\frac{0}{10}&amp;\frac{0}{10}&amp;\frac{5}{10}\\\frac{2}{10}&amp;\frac{6}{10}&amp;\frac{-1}{10}\end{array}\right]\end{gathered}

\begin{gathered}A^{-1}= \left[\begin{array}{ccc} \frac{-1}{5}&amp;\frac{2}{5}&amp;\frac{1}{10}\\0&amp;0&amp;\frac{1}{2}\\\frac{1}{5}&amp;\frac{3}{5}&amp;\frac{-1}{10}\end{array}\right]\end{gathered}

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

Inverse of Given matrix is \begin{gathered}\left[\begin{array}{ccc} \frac{-1}{5}&amp;\frac{2}{5}&amp;\frac{1}{10}\\0&amp;0&amp;\frac{1}{2}\\\frac{1}{5}&amp;\frac{3}{5}&amp;\frac{-1}{10}\end{array}\right]\end{gathered}

Given :

\begin{gathered}\left[\begin{array}{ccc}-3&amp;1&amp;2\\1&amp;0&amp;1\\0&amp;2&amp;0\end{array}\right]\end{gathered}

To Find :

\text{Inverse of matrix}

Formula Applied :

A^{-1}=\frac{1}{|A|}

Solution :

\begin{gathered}Let\:\:A =\left[\begin{array}{ccc}-3&amp;1&amp;2\\1&amp;0&amp;1\\0&amp;2&amp;0\end{array}\right]\end{gathered}

\begin{gathered}|A| = -3\left[\begin{array}{cc}0&amp;1\\2&amp;0\end{array}\right] -1\left[\begin{array}{cc}1&amp;1\\0&amp;0\end{array}\right] +2 \left[\begin{array}{cc}1&amp;0\\0&amp;2\end{array}\right]\end{gathered}

|A|=-3(0-2)-1(0-0)+2(2-0)∣A∣=−3(0−2)−1(0−0)+2(2−0)

|A|=-3(-2)-1(0) +2(2)\implies 6-0+4∣A∣=−3(−2)−1(0)+2(2)

|A| = 10∣A∣=10

\begin{gathered}A= \left[\begin{array}{ccc}-3&amp;1&amp;2\\1&amp;0&amp;1\\0&amp;2&amp;0\end{array}\right]\end{gathered}</p><p></p><p>[tex]\begin{gathered}adjA = \left[\begin{array}{cccc}0&amp;1&amp;1&amp;0\\2&amp;0&amp;0&amp;2\\1&amp;2&amp;-3&amp;1\\0&amp;1&amp;1&amp;0 \end{array}\right]^T\end{gathered}

\begin{gathered}adjA=\left[\begin{array}{ccc}(0-2)&amp;(0-0)&amp;(2-0)\\(4-0)&amp;(0-0)&amp;(0+6)\\(1-0)&amp;(2+3)&amp;(0-1)\end{array}\right]^T\end{gathered}

\begin{gathered}adjA = \left[\begin{array}{ccc}-2&amp;0&amp;2\\4&amp;0&amp;6\\1&amp;5&amp;1\end{array}\right] ^T\end{gathered}

\begin{gathered}adj A = \left[\begin{array}{ccc}-2&amp;4&amp;1\\0&amp;0&amp;5\\2&amp;6&amp; -1\end{array}\right]\end{gathered}

A^{-1}=\frac{1}{|A|}

\begin{gathered}A^{-1}= \frac{1}{10}\left[\begin{array}{ccc}-2&amp;4&amp;1\\0&amp;0&amp;5\\2&amp;6&amp; -1\end{array}\right]\end{gathered}

\begin{gathered}A^{-1} = \left[\begin{array}{ccc}\frac{-2}{10}&amp;\frac{4}{10}&amp;\frac{1}{10}\\\frac{0}{10}&amp;\frac{0}{10}&amp;\frac{5}{10}\\\frac{2}{10}&amp;\frac{6}{10}&amp;\frac{-1}{10}\end{array}\right]\end{gathered}

\begin{gathered}A^{-1}= \left[\begin{array}{ccc} \frac{-1}{5}&amp;\frac{2}{5}&amp;\frac{1}{10}\\0&amp;0&amp;\frac{1}{2}\\\frac{1}{5}&amp;\frac{3}{5}&amp;\frac{-1}{10}\end{array}\right]\end{gathered}

Similar questions