Math, asked by SushmitaVS1636, 7 months ago

Find the time in which an amount of ruppes 6250 amounts to 6750 at 4 % per annum if interest is compounded anually

Answers

Answered by sparklequeen62
4

Answer:

Answer:

. \huge \underline \mathscr \blue{answer}.

answer

⇢(Diagonal)

2

=(Length)

2

+(Breadth)

2

⇢(BD)

2

=(BC)

2

+(CD)

2

⇢(BD)

2

=(24cm)

2

+(7cm)

2

⇢(BD)

2

=576cm

2

+49cm

2

⇢(BD)

2

=625cm

2

⇢BD=

625cm

2

⇢BD=

25cm×25cm

BD=25cm

Diagonal

⇢(Diagonal)2=(Length)2+(Breadth)2⇢(BD)2=(BC)2+(CD)2⇢(BD)2=(24cm)2+(7cm)2⇢(BD)2=576cm2+49cm2⇢(BD)2=625cm2⇢BD=625cm2⇢BD=25cm×25cm⇢BD=25cm⎩⎪⎪⎪⎧Diagonal⎭⎪⎪⎪⎫⠀∴

Hence, Length of Diagonal is C) 25 cm

.∴Hence,LengthofDiagonalisC)25cm.

\begin{gathered}\begin{gathered}\dashrightarrow\sf\:\:(Diagonal)^2=(Length)^2+(Breadth)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(BC)^2+(CD)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(24\:cm)^2+(7\:cm)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=576\:cm^2+49\:cm^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=625\:cm^2\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{625\:cm^2}\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{25\:cm \times 25\:cm}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf BD=25\:cm}}\qquad\bigg\lgroup\bf Diagonal\bigg\rgroup\end{gathered} ⇢(Diagonal) 2 =(Length) 2 +(Breadth) 2 ⇢(BD) 2 =(BC) 2 +(CD) 2 ⇢(BD) 2 =(24cm) 2 +(7cm) 2 ⇢(BD) 2 =576cm 2 +49cm 2 ⇢(BD) 2 =625cm 2 ⇢BD= 625cm 2 ⇢BD= 25cm×25cm ⇢ BD=25cm ⎩ ⎪ ⎪ ⎪ ⎧ Diagonal ⎭ ⎪ ⎪ ⎪ ⎫ ⠀ \therefore\:\underline{\textsf{Hence, Length of Diagonal is C) \textbf{25 cm}}}.∴ Hence, Length of Diagonal is C) 25 cm .\end{gathered}

⇢(Diagonal)

2

=(Length)

2

+(Breadth)

2

⇢(BD)

2

=(BC)

2

+(CD)

2

⇢(BD)

2

=(24cm)

2

+(7cm)

2

⇢(BD)

2

=576cm

2

+49cm

2

⇢(BD)

2

=625cm

2

⇢BD=

625cm

2

⇢BD=

25cm×25cm

BD=25cm

Diagonal

⇢(Diagonal)2=(Length)2+(Breadth)2⇢(BD)2=(BC)2+(CD)2⇢(BD)2=(24cm)2+(7cm)2⇢(BD)2=576cm2+49cm2⇢(BD)2=625cm2⇢BD=625cm2⇢BD=25cm×25cm⇢BD=25cm⎩⎪⎪⎪⎧Diagonal⎭⎪⎪⎪⎫⠀∴

Hence, Length of Diagonal is C) 25 cm

.∴Hence,LengthofDiagonalisC)25cm.

Similar questions