Math, asked by rajabhaugite37, 4 months ago

find the time when P is equal to rupees 6400 a are is equal to 6% p.a. simple interest is equal to Rupees 1152​

Answers

Answered by architram3
0

Answer:

T=3

Step-by-step explanation:

T=si×100÷p×r. so T= 1152×100÷6400×6=3.so Time =3

Answered by Ladylaurel
0

Answer :

The time is 3 years.

Step-by-step explanation :

To Find,

  • The time

Solution,

Given that,

  • Principal = Rs. 6400
  • Rate = 6%
  • Simple interest = Rs. 1152

As we know that,

 \boxed{\bf{Time} \:  \sf{=  \dfrac{S.I. \times 100}{P \times R}}}

Where,

  • T = Time
  • S.I. = Simple interest
  • P = Principal
  • R = Rate

Therefore, time is,

 \bf{Time} \:  \sf{=  \dfrac{1152 \times 100}{6400 \times 6}} \\  \\   \sf{  \longrightarrow \:  \dfrac{1152 \times \cancel{100}}{ \cancel{6400} \times 6}} \\  \\   \sf{\longrightarrow \:  \dfrac{1152 \times 1}{64 \times 6}} \:  \\  \\ \sf{\longrightarrow \:  \dfrac{ \cancel{1152} \times 1}{64 \times  \cancel{6}}} \\  \\ \sf{\longrightarrow \:  \dfrac{192}{64}} \\  \\   \sf{\longrightarrow \:   \cancel{\dfrac{192}{64}}} \\  \\  \bf{\longrightarrow \:  3 \:  \:  \bigstar}

Therefore, the time is 3 years.

More Information

 \bullet \: \: {\bf{P} \:  \sf{= \dfrac{S.I. \times 100}{R \times T}}}

 \bullet \: \: {\bf{R} \:  \sf{= \dfrac{S.I. \times 100}{P \times T}}}

 \bullet \: \: {\bf{S.I.} \:  \sf{=  \dfrac{P \times R \times T}{100}}}

 \bullet \: \: {\bf{Time} \:  \sf{=  \dfrac{S.I. \times 100}{P \times R}}}

Similar questions