Math, asked by neetapambhar5, 10 months ago

Find the total surface area and lateral surface area of a cuboid having length 8meter breadth 35 centimeter and 9meter high

Answers

Answered by Anonymous
4

✶ Given :-

Length = 8m

Breadth = 35 cm = 0.35 m

height = 9m.

 \red{\bold{\underline{\underline{To \: Find:-}}}}

The total surface area of the cuboid.

The lateral surface area of the cuboid.

Now,

\underline\green{\:\textsf{Step \: by \: step \: explanation :-}}

Total surface area of the cuboid\bf\implies2× (l+ B) +( B×h) +(l×h)

\implies \: 2 \times (8 \times 35) + (0.35 \times 9) + (8 \times 9)

\implies \: 2 \times 280 + 3.15 + 72

\implies \: 560 + 3.15 + 72

\sf\implies  635.15

\therefore \: Now

lateral surface area of the cuboid = \bf\implies 2h(l+b)

\implies \: 2 \times 9(8 \times 0.35)

\implies \: 18 \times 8.35

\implies \: 150.3

_______ ♛ Be BrAiNly ♛_______

Answered by ItsTogepi
2

\huge\underline\mathfrak\color{gold}SolutioN:

\underline{\boxed{\mathtt{\red{Given:}}}}

\mathtt{Length \: = \: 8m}

\mathtt{Breadth \: = \: 35cm=0.35 m}

\mathtt{Height \: = \: 9m}

\underline{\boxed{\mathtt{\red{To \:Find:}}}}

  • The total surface area of the cuboid.
  • The lateral surface area of the cuboid.

\rule {300}{2}

\underline{\boxed{\mathtt{\red{Formula \: used:}}}}

Total surface area of the cuboid (TSA)

= 2(length×breadth + breadth ×height + height ×length)

Lateral surface area of the cuboid(LSA)

= 2(length + height × breadth +height)

= 2× height (length +breadth)

\rule {300}{2}

Now,

The total surface area of the cuboid

= 2(length×breadth + breadth ×height + height ×length)

\sf{= 2(8 \times 0.35+ 0.35 \times 9 + 9 \times 8)}

\sf{= 2(2.8+3.15+72)}[/tex[</p><p></p><p>[tex]\sf{= 2 \times 77.95}

\sf{= 155.9}

And the lateral surface area of the cuboid.

= 2× height (length +breadth)

\sf{= 2 \times 9(8+0.35)}

\sf{= 2 \times 9 \times8.35}

\sf{= 150.3}

Hence,the total surface area of the cuboid is 155.9 m and the lateral surface area of the cuboid is 150.3 m

\rule {300}{2}

Other formulas used in cuboid :

☆The volume of the cuboid

= length × breadth × height.

☆The length of the diagonal of the cuboid

= √( l² + b² +h²)

☆Perimeter of the cuboid

= 4(length + breadth + height)

\rule {300}{2}

\underline{\boxed{\mathtt{\red{ThankYou}}}}

Similar questions