Math, asked by doddysreevarsha6065, 4 months ago

find the total surface area and volume of a cone whose height is 28cm
and diameter is 42 cm​

Answers

Answered by MoodyCloud
19

Answer:

  • Total surface area of cone is 3696 cm².
  • Volume of cone is 12936 cm³.

Step-by-step explanation:

Given :-

  • Height of cone is 28 cm.
  • Diameter of cone is 42 cm.

To find :-

  • Total surface area.
  • Volume of cone.

Solution :-

Radius = Diameter/2

= 42/2

= 21

Radius (r) is 21 cm.

l = √r² + h²

Where,

  • l is slant height, r is radius and h is height of cone.

 \sf \rightarrow l = \sqrt{(21)^{2} + {(28)}^{2} }

 \sf \rightarrow l = \sqrt{441 + 784}

 \sf \rightarrow l = \sqrt{1225}

 \sf \rightarrow \bold{l = 35}

Slant height (l) is 35 cm.

Now,

Total surface area of cone = π + πrl

 \longrightarrow T.S.A = 22/7 × (21)² + 22/7 × 21 × 35

 \longrightarrow T.S.A = 22/7 × 441 + 22/7 × 735

 \longrightarrow T.S.A = 9702/7 + 16170/7

 \longrightarrow T.S.A = 1386 + 2310

 \longrightarrow T.S.A = 3696

Thus,

Total surface area of cone is 3696 cm².

We know,

Volume of cone = 1/3 πr²h

 \longrightarrow Volume = 1/3 × 22/7 × (21)² × 28

 \longrightarrow Volume = 1/3 × 22/7 × 441 × 28

 \longrightarrow Volume = 1/3 × 22/7 × 12348

 \longrightarrow Volume = 271656/21

 \longrightarrow Volume = 12936

Therefore,

Volume of cone is 12936 cm³.

Answered by MrAnonymous412
27

  \\   \: \color{blue}\underline{ \large\rm{Question :- }} \\

→ find the total surface area and volume of a cone whose height is 28cm and diameter is 42 ccm.

  \\   \: \color{blue}\underline{ \large\rm{Answer :- }} \\

\star Total surface area of cone = 3696cm²

\star Volume of cone = 12936 cm³

  \\   \: \color{blue}\underline{ \large\rm{Given  :- }} \\

\star Height = h = 28 cm

\star Diameter = d = 42

  \\   \: \color{blue}\underline{ \large\rm{Solution  :- }} \\

Here, d = 42 cm

First we have to find the radius , so

  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: diameter \:  = radius \times 2  \\ \\ \color{grey}   \sf \: \therefore \: radius \:  =  \frac{42}{2}  = 21cm^{2}  \\

Now ,

we have to find slant height

 \\  \purple{  \underline{\boxed{ \:  \:  \:  \:  \:  \sf \: (l) \: slant  \: height =  \sqrt{(height) ² + (radius) ²} \:  \:  \:  \: }}} \\

  \\ \sf \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  :   \implies \:  \:  \sqrt{ {(28)}^{2} +  {(21)}^{2}  }  \\

  \\ \sf \:  \:  \: \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:   \:  \:  \:\:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \: \:  \:  :   \implies \:  \:  \sqrt{784 + 441  } \\

  \\ \sf \:  \:  \:  \:  \:  \:   \:  :   \implies \:  \:  \sqrt{1225  } \\

 \\ \:  \:  \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \pink{ \boxed{{ \frak{ l = 35 cm }}}}\\

Now,

we have to find the total surface area of cone,

\\   \color{purple}\underline{ \boxed{ \:  \:  \:  \:  \:  \:  \:  \sf \: total \: surface \: area \: of \: cone \:  = \pi \: radius(length + radius) \:  \:  \:  \:  \:  \:  \:  \: }} \\

  \\ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  :  \: \implies \:   \:  \sf \:  \frac{22}{7} \times 21(35 + 21)  \\

  \\ \:  \: \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:   \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  :  \: \implies \:   \:  \sf \:  \frac{22}{7} \times 21 \times 56  \\

  \\ \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \: \implies \:   \:  \sf \:  66 \times 56  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \pink{ \boxed{\frak{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: total\: \:  surface \: \:area  \: \: cone = 3696  \: cm²}}}

Now,

we have to find the volume of cone ,

 \\   \color{purple}\underline{ \boxed{ \:  \:  \:  \:  \:  \:  \:  \sf \: volume\: of \: cone   =  \frac{1}{3}  \times \pi  \times \: radius^{2}   \times height\:  \:  \:  \:  \:  \:  \:  \: }} \\

  \\ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  :  \: \implies \:   \:  \sf \:   \frac{1}{3} \times  \frac{22}{7} \times( 21) ^{2}  \times 28 \\

  \\ \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \: \implies \:   \:  \sf \:  22\times 21 \times 28  \\

  \\ \:   \:   \:    \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \: \implies \:   \:  \sf \:  462\times 28  \\

  \\ \therefore \:   \:   \:    \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \pink{ \boxed {\frak{ volume \: of \: cone =  \:   \:  12936 \: cm \: ^{3}}} }\\

  \\   \: \color{blue}\underline{ \large\rm{Formulae :- }} \\

 \:  \: \:  \: \bigstar  \:  \:  \:  \sf \: \: slant  \: height =  \sqrt{(height) ² + (radius) ²} \:  \:  \:  \: \\

 \:  \:  \: \:   \bigstar\:  \:  \:  \:  \:  \:  \sf \: volume\: of \: cone   =  \frac{1}{3}  \times \pi  \times \: radius^{2}   \times height\:  \:  \:  \:  \:  \:  \:  \:  \\

 \:  \:  \: \:  \bigstar \:   \:  \:  \sf \: total \: surface \: area \: of \: cone \:  = \pi \: radius(length + radius) \:  \:  \:  \:  \:  \:  \:  \: \\

Similar questions