Math, asked by anu473422, 4 months ago

find the total surface area of a cone if it's slant height is 23m and diameter of its base is 24m​

Answers

Answered by ShírIey
13

Given that,

  • Slant Height of the cone is 23 m.
  • Diameter of its Base is 24 m.

Need to find:

  • The TSA(total surface area) of cone.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

\setlength{\unitlength}{1.6mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(16,1.6){\sf{12 m}}\put(22,10){\sf{23 m}}\end{picture}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

Solution: Finding Radius (r) = 24/2 = 12 m.

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;\boxed{\sf{\pink{TSA_{\:(cone)} = \pi r(r + l)}}}

where,

  • r is radius of the cone and, l is slant Height of the cone.

Therefore,

:\implies\sf TSA_{\;(cone)} = \bigg(\dfrac{22}{7} \times 12(12 + 23)\bigg) \\\\\\:\implies\sf TSA_{\;(cone)} =  \bigg(\dfrac{22}{7} \times 12 \times 35\bigg) \\\\\\:\implies{\underline{\boxed{\frak{\pink{ TSA_{\;(cone)} = 1320\;m^2}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \;TSA\; of \; cone \; is \; \bf{1320\;m^2 }.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\purple{\bigstar\: Formulae\:related\:to\:cone :}}}}}\mid}\\\\

  • \sf Area\:of\:base = \bf{\pi r^2}

  • \sf Curved\:surface\:area\:of\:cone = \bf{\pi rl}

  • \sf Total\:surface\:area\:of\:cone = Area\:of\:base + CSA = \pi r^2 + \pi rl = \bf{\pi r(r + l)}

  • \sf Volume\:of\:cone = \bf{\dfrac{1}{3} \pi r^2 h}
Answered by gurmanpreet1023
35

Total surface area of a cone

= 7Tr(r+1)

= (12)(12+21)

= 121(33) =

= 3961

= 396(3.14)

= 1243.44

Hence, the answer is 1243.44m2

Similar questions