Math, asked by vanhmingitochhawng, 4 months ago

find the total surface area of a cube whose volume is 125cm³​

Answers

Answered by DüllStâr
59

Question:

Find the total surface area of a cube whose volume is 125cm³.

To find:

  • Surface area of cube

Given :

  • Volume of cube = 125

Solution:

We know:

  \bigstar \boxed{ \rm{}Surface \: Area \: of \: cube = 6 {(side)}^{2} }

So as we can see here we need value of side so first let's find side of cube

Formula of Volume of cube:

 \bigstar \boxed{ \rm{Volume \: of \: cube = ( {side)}^{3} }}

By using this formula we can find value of side

 \leadsto\sf{}Volume \: of \: cube = ( {side)}^{3}

 \\

 \leadsto\sf{}125= ( {side)}^{3}

 \\

 \leadsto\sf{}side =  \sqrt[3] {125}

 \\

 \leadsto\sf{}side = {125}^{ \frac{1}{3} }

 \\

 \leadsto\sf{}side = { \{5 \times 5 \times 5 \}}^{ \frac{1}{3} }

 \\

 \leadsto\sf{}side = { \{5 {}^{3} \}}^{ \frac{1}{3} }

 \\

 \leadsto\sf{}side = { \{5\}}^{ \frac{3}{3} }

 \\

 \leadsto\sf{}side = { \{5\}}^{ \cancel \frac{3}{3} }

 \\

 \leadsto \underline{ \boxed{\sf{}side =5 \: cm}}

 \\

 \therefore  \: \underline{ \sf{}length \: of \: side \:  =  \: 5 \: cm}

Now Let's find surface area by using formula mentioned above:

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 {(side)}^{2}

 \\

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 { \times 5}^{2}

 \\

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 { \times 5\times 5}

 \\

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 { \times 25}

 \\

 \leadsto \underline{ \boxed{\sf{}Surface \: Area \: of \: cube = 150 \: cm}}

\\

 \therefore  \: \underline{ \sf{}Surface \: area \: of \: cube  =  \: 150 \: cm}

Answered by XxMissCutiepiexX
12

Question:

  • Find the total surface area of a cube whose volume is 125cm³.

To find:

  • Surface area of cube

Given :

  • Volume of cube = 125

Solution:

  • We know:

  \bigstar \boxed{ \rm{}Surface \: Area \: of \: cube = 6 {(side)}^{2} }

So as we can see here we need value of side so first let's find side of cube

Formula of Volume of cube:

 \bigstar \boxed{ \rm{Volume \: of \: cube = ( {side)}^{3} }}

By using this formula we can find value of side

 \leadsto\sf{}Volume \: of \: cube = ( {side)}^{3}

 \\

 \leadsto\sf{}125= ( {side)}^{3}

 \\

 \leadsto\sf{}side =  \sqrt[3] {125}

 \\

 \leadsto\sf{}side = {125}^{ \frac{1}{3} }

 \\

 \leadsto\sf{}side = { \{5 \times 5 \times 5 \}}^{ \frac{1}{3} }

 \\

 \leadsto\sf{}side = { \{5 {}^{3} \}}^{ \frac{1}{3} }

 \\

 \leadsto\sf{}side = { \{5\}}^{ \frac{3}{3} }

 \\

 \leadsto\sf{}side = { \{5\}}^{ \cancel \frac{3}{3} }

 \\

 \leadsto \underline{ \boxed{\sf{}side =5 \: cm}}

 \\

 \therefore  \: \underline{ \sf{}length \: of \: side \:  =  \: 5 \: cm}

Now Let's find surface area by using formula mentioned above:

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 {(side)}^{2}

 \\

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 { \times 5}^{2}

 \\

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 { \times 5\times 5}

 \\

 \leadsto\sf{}Surface \: Area \: of \: cube = 6 { \times 25}

 \\

 \leadsto \underline{ \boxed{\sf{}Surface \: Area \: of \: cube = 150 \: cm}}

\\

 \therefore  \: \underline{ \sf{}Surface \: area \: of \: cube  =  \: 150 \: cm}

Similar questions