Math, asked by itzbindassgurl, 5 months ago

find the total surface area of a right circular cylinder whose base has radius 7 cm and height 8 cm 2) find the volume of a cylinderical can height 21 cm and base radius 8 cm

for brainly stars...let's see they are intelligent or not​

Answers

Answered by TheChaгm
23

Question 1 :-

Given:-

  • Radius of cylinder
  • Height of cylinder

To find:-

  • Total surface area of right a circular cylinder.

Solution:-

Radius of base:- 7 cm

Height:- 8 cm

Total surface area:- 2πr(h+r)

2×22÷7×7(7+8)

2×22÷7×7×15

660 cm²

________________________________

Question 2 :-

Given:-

  • Height of the cylindrical can
  • Radius

To find:-

  • Volume of the cylindrical can

Solution:-

Radius:- 8 cm

Height:- 21 cm

Volume:- πr²h

22÷7×8×8×21

4224 cu.cm

___________________________

Answered by CɛƖɛxtríα
93

{\underline{\underline{\bf{Question\:1:}}}}

  • Find the total surface area of a right-circular cylinder whose base radius is 7 cm and height is 8 cm.

{\underline{\underline{\bf{Answer:}}}}

  • The total surface area is 660 cm².

{\underline{\underline{\bf{Explanation:}}}}

Given:

  • Base radius of a cylinder = 7 cm.
  • Height of the cylinder = 8 cm.

Need to find:

  • The Total Surface Area (TSA) of the cylinder.

Formula to be used:

\small\underline{\boxed{\sf{{TSA}_{(Cylinder)}=2\pi r (h+r)\:sq.units}}}

Solution:

By substituting the given measures in the formula,

\:\:\:\:\:\:\:\:\:\implies{\sf{2\pi r (h+r)\:sq.units\:\:\:\:\:\:\:(\pi=\frac{22}{7})}}

\:\:\:\:\:\:\:\:\:\implies{\sf{2\times \frac{22}{\cancel{7}}\times \cancel{7}\times (8+7)}}

\:\:\:\:\:\:\:\:\:\implies{\sf{2\times 22\times 15}}

\:\:\:\:\:\:\:\:\:\implies{\sf{44\times 15}}

\:\:\:\:\:\:\:\:\:\implies{\boxed{\sf{\red{660\:{cm}^{2}}}}}

  • Hence, the TSA of the right-circular cylinder is 660 cm².

__________________________________________

{\underline{\underline{\bf{Question\:2:}}}}

  • Find the volume of a cylinderical can of height 21 cm and base radius 8 cm.

{\underline{\underline{\bf{Answer:}}}}

  • The volume is 4224 cm³.

{\underline{\underline{\bf{Explanation:}}}}

Given:

  • Height of a cylinderical can = 21 cm.
  • Base radius of the cylinderical can = 8 cm.

Need to find:

  • The volume of the cylinderical can.

Formula to be used:

\small\underline{\boxed{\sf{{Volume}_{(Cylinder)}=\pi {r}^{2}h\:cu.units}}}

Solution:

By substituting the given measures in the formula,

\:\:\:\:\:\:\:\:\:\implies{\sf{\pi {r}^{2}h\:cu.units\:\:\:\:\:\:\:(\pi=\frac{22}{7})}}

\:\:\:\:\:\:\:\:\:\implies{\sf{\frac{22}{\cancel{7}}\times {8}^{2}\times {\cancel{21}}^{3}}}

\:\:\:\:\:\:\:\:\:\implies{\sf{22\times 8\times 8\times 3}}

\:\:\:\:\:\:\:\:\:\implies{\sf{176\times 24}}

\:\:\:\:\:\:\:\:\:\implies{\boxed{\sf{\red{4224\:{cm}^{3}}}}}

  • Hence, the volume of the cylinderical can is 4224 cm³.

__________________________________________

Attachments:
Similar questions