Math, asked by Anonymous, 3 months ago

QUESTION:
The four vertices of a quadrilateral are (1, 2), (−5, 6), (7, −4) and (k, −2) taken in order. If the area of the quadrilateral is zero, find the value of k.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬
★Kindly don't spam.
★Explain with proper figure.
★Strict actions will be taken against Spammers.​

Answers

Answered by pranavsat7
0

Answer:

Formula:

Area of quadrilateral = area of triangle 1 + area of triangle 2

Area of triangle =  

2

1

​  

[x  

1

​  

(y  

2

​  

−y  

3

​  

)+x  

2

​  

(y  

3

​  

−y  

1

​  

)+x  

3

​  

(y  

1

​  

−y  

2

​  

)]

Given,

A(1,2),B(−5,6),C(7,−4),D(k,−2)

Let the first triangle be, ABC

Area of  △ABC=  

2

1

​  

[1(6−(−4))−5(−4−2)+7(2−6)]

=  

2

1

​  

[10+30−28]

=6sq.units

Area of  △ACD=  

2

1

​  

[1(−4+2)+7(−2−2)+k(2+4)]

=  

2

1

​  

[−2−28+6k]

=−15+3ksq.units

Area of quadrilateral =6−15+3k=0

k=3

Step-by-step explanation:

hope it the the right answer...

Answered by riya15042006
2

\bold{\large{\boxed{\red{\tt{ANSWER}}}}}

GIVEN :-

The four vertices of a quadrilateral are (1, 2), (−5, 6), (7, −4) and (k, −2)

And also Area of quadrilateral is 0

TO FIND :-

Value of k

SOLUTION :-

The four vertices of a quadrilateral are A(1, 2), B(−5, 6), C(7, −4) and D(k, −2)

We know area of triangle formed by three points ( x1 , y1 ) , ( x2 , y2 ) and ( x3 , y3 ) is given by ,

Area \: of \:Triangle =   \pink{\tt{ \frac{1}{2} [ x1 ( y2 - y3 ) + x2 ( y3 - y1 ) + x3 ( y1 - y2 )]}}

Now ,

Area of Triangle ABC ,

Where taking three points A(1, 2), B(−5, 6), C(7, -4)

Area  \: of  \: Triangle  \: ABC  =  \frac{1}{2} [ 1 ( 6-(-4) ) + (-5) ( -4-2 ) + 7 ( 2-6 ) ]

\rightarrow{ \frac{1}{2} [ 1 ( 6+4 ) -5 ( -4-2 ) + 7 ( 2-6 ) ]}

\rightarrow{ \frac{1}{2} [ 6 + 4 + 20 + 10 + 14 - 42 ]}

\rightarrow{ \frac{1}{2}  [ 54 - 42 ]}

\rightarrow{ \frac{1}{2}  [ 12 ]}

\rightarrow{6 \: sq.units}

Now ,

Area of Triangle ACD ,

Where taking three points A(1 , 2) , C(7, -4) ,D(k, -2)

Area  \: of  \: Triangle  \: ACD  =  \frac{1}{2} [ 1( -4-2 ) + 7( -2-2 ) + k( 2+4 ) ]

\rightarrow{ \frac{1}{2} [ -4 -2 -14 -14 +2k +4k ]}

\rightarrow{ \frac{1}{2}  [ -30 + 6k ]}

\rightarrow [ 3k - 15 ] sq.units

\purple{Area ( ABCD ) = Area ( ABC ) + Area ( ACD )}

\rightarrow{0 = 6 + 3k - 15}

\rightarrow{0 = 6 - 15 + 3k}

\rightarrow{0 =  - 9 + 3k}

\rightarrow{9 = 3k}

\rightarrow{k =  \frac{9}{3} }

\rightarrow{k = 3}

\bold{\large{\blue{\tt{I  \: hope \:  it  \: helps  \: u  \: Utkarsh \:  !!}}}}


Anonymous: Thank you so much...
riya15042006: mention not ^_^
Similar questions