Math, asked by cuty35, 1 month ago

Find the total surface area of ​​the sheet required for a closed balance of radius 4.2 cm and height 6 cm. Also find the volume of this cylinder​

Answers

Answered by KnightLyfe
17

Correct Question:

Find the total surface area of the sheet required to make a closed cylinder of radius 4.2 cm and height 6 cm. Also find the volume of this cylinder.

Given Information: The Radius of Closed cylinder is 4.2cm and it's Height is 6cm.

Need to Find: The Total surface area of Cylinder and The volume of Cylinder

Formula Used: \\\hookrightarrow\tt{Total\: surface\: area\: of\: Cylinder=2\times \pi\times r(h+r)}

\hookrightarrow\tt{Volume\: of\: Cylinder=\pi\times {r}^{2}\times h}

Where,

  • r is Radius of Cylinder
  • h is Height of Cylinder

________________________________

Solution:

\longmapsto\sf{Radius\: of\: Cylinder=r=4.2\: cm}

\longmapsto\sf{Height\: of\: Cylinder=h=6\: cm}

~Substituting all the values in Formula,

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \sf{Total\: surface\: area\: of\: Cylinder=2\times \pi\times r(h+r)}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \longrightarrow \sf{Total\: surface\: area\: of\: Cylinder=2\times \dfrac{22}{7}\times 4.2(6+4.2)}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \sf{Total\: surface\: area\: of\: Cylinder=2\times \dfrac{22}{7}\times 4.2(10.2)}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \sf{Total\: surface\: area\: of\: Cylinder=2\times \dfrac{22}{7}\times 42.84}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\longrightarrow \sf{Total\: surface\: area\: of\: Cylinder=\dfrac{22}{7}\times 85.68}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\longrightarrow \bold{Total\: surface\: area\: of\: Cylinder=\color{red}{269.28\: {cm}^{2}}}

  • Henceforth, the Total Surface area of Cylinder is 26.28cm²

Now,

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{Volume\: of\: Cylinder=\pi\times {r}^{2}\times h}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{Volume\: of\: Cylinder=\dfrac{22}{7}\times {4.2}^{2}\times 6}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{Volume\: of\: Cylinder=\dfrac{22}{7}\times 17.64\times 6}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{Volume\: of\: Cylinder=\dfrac{22}{7}\times 105.84}

\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \bold{Volume\: of\: Cylinder=\color{red}{332.64\: {cm}^{3}}}

Required Answer:

\twoheadrightarrow Total Surface Area of Cylinder is \bold\color{purple}{26.28\: {cm}^{2}}

\twoheadrightarrow Volume of Cylinder is \bold\color{purple}{332.64\: {cm}^{3}}

Similar questions