Math, asked by abuzarmohd429, 11 months ago

find the tsa and csa of a right circular cylinder of height 15 cm and whose base radius is 7cm

Answers

Answered by jaidkingstudio587
1

Answer:

this the answer of questions may be it is helpful for u

Attachments:
Answered by TheBrainlyWizard
44

\bf{\underline{\underline{Given}}}

\mathsf{\bigstar\: Height (h) = 15\:cm}

\mathsf{\bigstar\: Radius (R) = 7\:cm}\\ \\

\bf{\underline{\underline{To\:find}}}

\mathsf{\bigstar\: Curved\:surface\:area}

\mathsf{\bigstar\: Total\:surface\:area}\\ \\

\bf{\underline{\underline{Solution}}}

\mathsf{For\:right\:circular\:cylinder}\\ \\

\mathsf{\diamond\:\: CSA\:of\:cylinder = 2\pi Rh}\\

\mathtt{\implies\: 2 × \frac{22}{7} × 7\:cm × 15\:cm}\\

\mathtt{\implies\: 2 × \frac{22}{\cancel{7}} × \cancel{7} \:cm × 15\:cm}\\

\mathtt{\implies\: 2 × 22 × 1\:cm × 15\:cm}\\

\mathtt{\implies\: 44 × 15\: cm^{2}}

\fbox{\mathtt{\red{\implies\: 660\: cm^{2}}}}\\ \\

\mathsf{\diamond\:\: TSA\:of\:cylinder = CSA + 2 × Area \: of \: base}\\

\mathtt{\implies\: 2\pi R h + 2 \pi R^{2}}\\

\mathtt{\implies\: 660\: cm^{2} + 2 × \frac{22}{7} × 7\:cm × 7\:cm}\\

\mathtt{\implies\: 660\: cm^{2} + 2 × \frac{22}{\cancel{7}} × \cancel{7}\:cm ×7\:cm }\\

\mathtt{\implies\: 660\: cm^{2} + 2 × 22 × 1\:cm × 7\:cm}

\mathtt{\implies\: 660\: cm^{2} + 44\:cm × 7\:cm}

\mathtt{\implies\: 660\: cm^{2} + 308\:cm^{2}}

\fbox{\mathtt{\green{\implies\: 968\:cm^{2}}}}\\ \\

  • CSA = 660 cm²
  • TSA = 968 cm²
Similar questions