Math, asked by ItzKaminiForYou, 10 hours ago

find the TSA LSA and Volume of cube whose sides are 3cm​

Answers

Answered by ItzDekisugi07
219

1. The Total surface area (TSA) of cube:

Let a be the side or edge of the cube, then the Total surface area (TSA) of cube is given by,

⇒ TSA = 6a²

where, a is the side or edge of the cube.

By substituting the given value in the formula, we get:

⇒ TSA = 6(3)²

⇒ TSA = 6(9)

⇒ TSA = 54

The total surface area of cube is 54cm².

2. The Lateral surface area (LSA) of cube:

Let a be the side or edge of the cube, then the Lateral surface area (TSA) of cube is given by,

⇒ LSA = 4a²

where, a is the side or edge of the cube.

By substituting the given value in the formula, we get:

⇒ LSA = 4(3)²

⇒ LSA = 4(9)

⇒ LSA = 36

The lateral surface are of cube is 36cm².

3. The volume of cube:

Let a be the side or edge of the cube, then the Volume of cube is given by,

⇒ Volume = a³

where, a is the side or edge of the cube.

By substituting the given value in the formula, we get:

⇒ Volume = (3)³

⇒ Volume = 27

The volume of cube is 27cm³.

Answered by llMsCutiepiell
121

Answer :-

TSA of cube = 54 cm²

LSA of cube = 36 cm²

Given :-

Side of cube = 3 cm

To Find :-

TSA of cube = ?

LSA of cube = ?

Explanation :-

As we know, TSA means area of all faces of a solid shape and LSA means area of four faces of a solid shape.

\blue { \boxed { \bf \bigstar \; TSA \; of \; cube = 6 \; (Side)^2 \; \bigstar }}

\rm : \; \longmapsto 6 \; (3)^2 \; \; cm^2

\rm : \; \longmapsto 6 \times 3 \times 3 \; \; cm^2

\rm : \; \longmapsto 6 \times 9 \; \; cm^2

\red { \underline { \boxed { \bf : \; \longmapsto 54 \; \; cm^2 \qquad \star }}}

\pink { \boxed { \bf \bigstar \; CSA \; of \; cube = 4 \; (Side)^2 \; \bigstar }}

\rm : \; \longmapsto 4 \; (3)^2 \; \; cm^2

\rm : \; \longmapsto 4 \times 3 \times 3 \; \; cm^2

\rm : \; \longmapsto 4 \times 9 \; \; cm^2

\green { \underline { \boxed { \bf : \; \longmapsto 36 \; \; cm^2 \qquad \star }}}

Hence, the TSA and LSA of cube are 54 cm² and 36 cm² respectively.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions