Math, asked by devil424, 3 months ago

find the tsa of cone ,if its slant height is 21 cm and radius is 7cm​

Answers

Answered by ImperialGladiator
29

Answer :

616cm²

Explanation :

A cone with slant height 21cm and radius of the base 7cm.

Find it's T. S. A. (Total surface area).

Formula :

\rm \longrightarrow Total \: surface \: area \: of \: cone = \pi r(l + r)

Where,

  • Taking \pi = \dfrac{22}{7}
  • l(slant height) = 21cm.
  • r(radius) = 7cm.

On substituting the given values :

\sf \longrightarrow \: \dfrac{22}{7}  \times 7(21 + 7) \\

\sf \longrightarrow \: 22(21 + 7) \\

\sf \longrightarrow \: 22(28) \\

\sf \longrightarrow \: 616 {cm}^{2}  \\

{ \underline{ \sf{ \therefore{T. S. A. \: of \: the \: cone =  {616cm}^{2} }}}}

Answered by Anonymous
158

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Given:}}}}}}}\end{gathered}

  • ⇢ Slant height of cone = 21 cm
  • ⇢ Radius of cone = 7 cm

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{To Find:}}}}}}}\end{gathered}

  • ⇢ TSA of cone

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Using Formula:}}}}}}}\end{gathered}

 \dag{\underline{\boxed{\sf{Total \:  surface  \: area \:  of \:  Cone ={{\pi}r(l+r)}}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Solution:}}}}}}}\end{gathered}

  \quad{: \implies{\sf{Total \:  surface  \: area \:  of \:  Cone ={{\pi}r(l+r)}}}}

  • ⇢ Substituting the values

 \quad{: \implies{\sf{Total \:  surface  \: area \:  of \:  Cone ={{\dfrac{22}{7} } \times 7(21+7)}}}}

 \quad{: \implies{\sf{Total \:  surface  \: area \:  of \:  Cone ={{\dfrac{22}{\cancel{7}}} \times{\cancel{7}}(21+7)}}}}

\quad{: \implies{\sf{Total \:  surface  \: area \:  of \:  Cone ={22 \times{(28)}}}}}

\quad{: \implies{\sf{Total \:  surface  \: area \:  of \:  Cone ={22 \times 28}}}}

\quad{: \implies{\sf{Total \:  surface  \: area \:  of \:  Cone ={616 \:  {cm}^{2} }}}}

\begin{gathered} \dag{\overline{\underline{\boxed{\bf{\color{red}{TSA = 616 {cm}^{2}}}}}}}\end{gathered}

  • ⇢ Henceforth,The TSA of cone is 616 cm².

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Diagram:}}}}}}}\end{gathered}

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{7 cm}}\put(9.5,10){\sf{21 cm}}\end{picture}

  • ⇢ Request: Please see the answer from website Brainly.in.
  • ⇢ Please check given attachment also!

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}{\textsf{\textbf{\underline{\underline{\color{red}{Cone:}}}}}}\end{gathered}

  • A cone is a three-dimensional solid geometric figure having a circle at one end and a pointed edge at the other.  
  • A cone can be carved out from a cylinder.
  • The three elements of the cone are its radius, height, and slant height.
  • Radius (r) of a cone is the same as the radius of the circle at the end of the cone.  
  • Height (h) is the distance from the center of the circle at one end to the pointed edge at the other end.
  • Slant Height (s) is the distance along the curved surface, drawn from the edge at the top to the circumference of the circle at the base.

\begin{gathered}{\textsf{\textbf{\underline{\underline{\color{red}{Formulas of Cone:}}}}}}\end{gathered}

The relation between slant height, height and rdius of a cone in math.

 \dashrightarrow \sf{ s =  \sqrt{( {r}^{2} +  {h}^{2}  )}}

Volume of Cone

 \dashrightarrow{\sf{Volume \:  of \:  a \:  Cone  = \dfrac{1}{3}{\pi}{r}^{2}h}}

Curved Surface Area

\dashrightarrow{\sf{curved \: surface \: area \: of \: cone= {{\pi}rl}}}

Attachments:
Similar questions