Physics, asked by prabhthind6424, 11 months ago

Find the unit vector of vector A - B. Where vector A = 2i - j + 2k unit and B = -i -2j +2k unit

Answers

Answered by Surya092
1

Answer:

3i+j

Explanation:

Answered by sonuojha211
2

Answer:

\dfrac{3\hat i+\hat j}{\sqrt{10}}

Explanation:

Given:

  • \vec A = 2\hat i-\hat j+2\hat k
  • \vec B = -\hat i-2\hat j+2\hat k

\vec A-\vec B = ( 2\hat i-\hat j+2\hat k)-(-\hat i-2\hat j+2\hat k) \\=(2-(-1))\hat i+(-1-(-2))\hat j+(2-2)\hat k\\=3\hat i+\hat j+0\hat k\\

The magnitude of \vec A-\vec B is given by

|\vec A-\vec B| = \sqrt{3^2+1^2+0^2} = \sqrt{10}

Thus, unit vector of \vec A-\vec B is given by

\hat n = \dfrac{\vec A-\vec B}{|\vec A -\vec B|}=\dfrac{3\hat i+\hat j+0\hat k}{\sqrt{10}}=\dfrac{3\hat i+\hat j}{\sqrt{10}}

Similar questions