Physics, asked by anuradhamehra4101, 7 months ago

find the unit vector parallel to the resultant of the vectors A vector = 2 i^-6j^-3k^ and B vector=4i^+3j^-k^​

Answers

Answered by mathdude500
12

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{\vec{a}} = 2\: \hat{i} - 6 \:  \hat{j} - 3 \:  \hat{k} \\ &\sf{\vec{b}}  = 4\: \hat{i} + 3 \:  \hat{j} - \:  \hat{k}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{unit \: vector \:  \parallel \: to \:  \: \vec{a} \:  +  \: \vec{b}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula\:Used - }}}}  \end{gathered}

We know,

 \tt \: unit \: vector \: in \: the \: direction \: of \: \vec{a} = \dfrac{\vec{a}}{ |\vec{a}| }

\large\underline{\bold{Solution-}}

\rm :\longmapsto\: \tt \: Let  \: the \:required \:  resultant \: vector \: be \: \vec{c}

So,

\rm :\longmapsto\:\vec{c} \:  =  \: \vec{a} \:  +  \: \vec{b}

\rm :\longmapsto\:\vec{c} = 2\: \hat{i} - 6 \:  \hat{j} - 3\:  \hat{k} + 4\: \hat{i} + 3 \:  \hat{j} - \:  \hat{k}

\rm :\longmapsto\:\vec{c} = 6\: \hat{i} - 3 \:  \hat{j} - 4\:  \hat{k}

Hence,

\rm :\longmapsto\: |\vec{c}|  =  \sqrt{ {(6)}^{2} +  {( - 3)}^{2} +  {( - 4)}^{2}   }

\rm :\longmapsto\: |\vec{c}|  =  \sqrt{36 + 9 + 16}

\rm :\longmapsto\: |\vec{c}|  =  \sqrt{61}

So,

  • unit vector parallel to the resultant of vector a and vector b is given by

\rm :\longmapsto\: \:  \hat{c} \: =  \:  \dfrac{\vec{c}}{ |\vec{c}| }

\rm :\longmapsto\: \:  \hat{c} \: =  \: \dfrac{6\: \hat{i} - 3 \:  \hat{j} - 4\:  \hat{k}}{ \sqrt{61} }

\rm :\longmapsto\: \:  \hat{c} \: =  \: \dfrac{6}{ \sqrt{61} } \: \hat{i} - \dfrac{3}{ \sqrt{61} }  \:  \hat{j} - \dfrac{4}{ \sqrt{61} } \:  \hat{k}

Basic Concepts :-

Properties of Unit Vector :-

  • The length of unit vector is 1 unit.

  • The scalar components of unit vector gives direction cosines.

 \sf \: Let  \: us \: consider \: a \: unit \: vector \: \:  \hat{a} \:  = l\: \hat{i} + m \:  \hat{j} + n\:  \hat{k}

then,

1. \:  \:  \tt \:  {l}^{2}  +  {m}^{2}  +  {n}^{2}  = 1

(2). \:  \tt \: if \: \:  \hat{a} \: makes \: angle \alpha  \: and  \: \beta \: and \:   \gamma  \: with \: axis \: then

\rm :\longmapsto\:l \:  =  \:  \cos( \alpha)  \\ \rm :\longmapsto\:m \:  =  \:  \cos( \beta )  \\ \rm :\longmapsto\:n \:  =  \:  \cos( \gamma )

and

\rm :\longmapsto\: {cos}^{2} \alpha   +  {cos}^{2} \beta   +  {cos}^{2}   \gamma = 1

Answered by XxitsmrseenuxX
0

Answer:

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{\vec{a}} = 2\: \hat{i} - 6 \:  \hat{j} - 3 \:  \hat{k} \\ &\sf{\vec{b}}  = 4\: \hat{i} + 3 \:  \hat{j} - \:  \hat{k}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{unit \: vector \:  \parallel \: to \:  \: \vec{a} \:  +  \: \vec{b}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula\:Used - }}}}  \end{gathered}

We know,

 \tt \: unit \: vector \: in \: the \: direction \: of \: \vec{a} = \dfrac{\vec{a}}{ |\vec{a}| }

\large\underline{\bold{Solution-}}

\rm :\longmapsto\: \tt \: Let  \: the \:required \:  resultant \: vector \: be \: \vec{c}

So,

\rm :\longmapsto\:\vec{c} \:  =  \: \vec{a} \:  +  \: \vec{b}

\rm :\longmapsto\:\vec{c} = 2\: \hat{i} - 6 \:  \hat{j} - 3\:  \hat{k} + 4\: \hat{i} + 3 \:  \hat{j} - \:  \hat{k}

\rm :\longmapsto\:\vec{c} = 6\: \hat{i} - 3 \:  \hat{j} - 4\:  \hat{k}

Hence,

\rm :\longmapsto\: |\vec{c}|  =  \sqrt{ {(6)}^{2} +  {( - 3)}^{2} +  {( - 4)}^{2}   }

\rm :\longmapsto\: |\vec{c}|  =  \sqrt{36 + 9 + 16}

\rm :\longmapsto\: |\vec{c}|  =  \sqrt{61}

So,

unit vector parallel to the resultant of vector a and vector b is given by

\rm :\longmapsto\: \:  \hat{c} \: =  \:  \dfrac{\vec{c}}{ |\vec{c}| }

\rm :\longmapsto\: \:  \hat{c} \: =  \: \dfrac{6\: \hat{i} - 3 \:  \hat{j} - 4\:  \hat{k}}{ \sqrt{61} }

\rm :\longmapsto\: \:  \hat{c} \: =  \: \dfrac{6}{ \sqrt{61} } \: \hat{i} - \dfrac{3}{ \sqrt{61} }  \:  \hat{j} - \dfrac{4}{ \sqrt{61} } \:  \hat{k}

Basic Concepts :-

Properties of Unit Vector :-

The length of unit vector is 1 unit.

The scalar components of unit vector gives direction cosines.

 \sf \: Let  \: us \: consider \: a \: unit \: vector \: \:  \hat{a} \:  = l\: \hat{i} + m \:  \hat{j} + n\:  \hat{k}

then,

1. \:  \:  \tt \:  {l}^{2}  +  {m}^{2}  +  {n}^{2}  = 1

(2). \:  \tt \: if \: \:  \hat{a} \: makes \: angle \alpha  \: and  \: \beta \: and \:   \gamma  \: with \: axis \: then

\rm :\longmapsto\:l \:  =  \:  \cos( \alpha)  \\ \rm :\longmapsto\:m \:  =  \:  \cos( \beta )  \\ \rm :\longmapsto\:n \:  =  \:  \cos( \gamma )

and

\rm :\longmapsto\: {cos}^{2} \alpha   +  {cos}^{2} \beta   +  {cos}^{2}   \gamma = 1

Similar questions