Math, asked by CadburyDarling, 25 days ago

find the unit vector parallel to the resultant of the vectors A vector = 2 i^-6j^-3k^ and B vector=4i^+3j^-k^​

Answers

Answered by AbhinavRocks10
67

Answer:

\large \text{$\vec A=\left(\dfrac{6}{\sqrt{61}}, \ - \dfrac{3}{\sqrt{61}}, \ - \dfrac{4}{\sqrt{61}}\right)$}

Explanation:

Given :

\begin{gathered}\large \text{$p=2\hat{i}-6\hat{j}-3\hat k$ and }\\\\\\\large \text{$q=4\hat{i}+3\hat{j}-\hat k$}\end{gathered}

First add both vectors

\begin{gathered}\large \text{$\vec p+\vec q=2\hat{i}-6\hat{j}-3\hat k+4\hat{i}+3\hat{j}-\hat k$}\\\\\\\large \text{$\vec p+\vec q=6\hat{i}-3\hat{j}-4\hat k$}\end{gathered}

Now finding magnitude

  • We know formula for magnitude

\large \text{$\sqrt{x^2+y^2+z^2}$}

Put the values here

\begin{gathered}\large \text{$I \ \vec p+\vec q \ I=\sqrt{6^2+(-3)^2+(-4)^2}$}\\\\\\\large \text{$I \ \vec p+\vec q \ I=\sqrt{36+16+9}$}\\\\\\\large \text{$I \ \vec p+\vec q \ I=\sqrt{61}$}\end{gathered}

Now for unit vector

\begin{gathered}\large \text{$\vec A=\dfrac{6\hat{i}-3\hat{j}-4\hat k}{\sqrt{61}} $}\\\\\\\large \text{$\vec A=\left(\dfrac{6}{\sqrt{61}}, \ - \dfrac{3}{\sqrt{61}}, \ - \dfrac{4}{\sqrt{61}}\right)$}\end{gathered}

Similar questions