Math, asked by channakang3, 6 days ago

find the unknown length of X in the following figures​

Attachments:

Answers

Answered by UserUnknown57
2

Answer:

step by step explanation:

by using Pythagoras theorem,

\Large{\mathsf{  \Rightarrow  a^2 + b^2 = c^2}}

\Large{\mathsf{  \Rightarrow  7^2 + x^2 = 25^2}}

\Large{\mathsf{  \Rightarrow  49 + x^2 = 625}}

\Large{\mathsf{  \Rightarrow    x^2 = 625-49}}

\Large{\mathsf{  \Rightarrow    x^2 = 576}}

\Large{\mathsf{  \Rightarrow    x = \sqrt{576}}}

\Large{\mathsf{  \Rightarrow    x = 24}}

Answered by priyasamanta501
7

\tt {\underline{ \underline{ \purple{✠Answer:-}}}}

Formula used:

  \tt{height= \sqrt{(hypo)²-(base)²} }

Solution :

⋆ Let ABC is a triangle where AB= 25cm, BC= 7cm and CA= x cm

 \sf{ {x} =   \sqrt{ {25}^{2}  -  {7}^{2} }    }

 ⟹ \sf{ {x}^{}  =  \sqrt{625 - 49} }

⟹ \sf{x =  \sqrt{576} }

⟹ \bf \red{x = 24}

 \therefore \rm{The \: value \: of \: x \: is \:   \red{24cm}. }

Similar questions