Math, asked by sharmareenu87pbfj2m, 1 year ago

find the value :
27a^3+8b^3 if 3a+2b=6 and ab=2

Answers

Answered by harshdeep29
26
if any problem comment on it
Attachments:
Answered by priyarksynergy
9

Given are the values of '3a+2b' and 'ab', find the value of 27a^3+8b^2.

Explanation:

  • Let there be two real numbers 'x' and 'y'.
  • Then using the identity for the cube of the sum of two numbers we have, (x+y)^3=x^3+3a^2b+3ab^2+y^3  
  • Now here let's put x=3a,\ y=2b  
  • Then we get,
  •            ->(3a+2b)^3=27a^3+3(3a)^2(2b)+3(3a)(2b)^2+8b^3 \\->(3a+2b)^3=27a^3+8b^3+54a^2b+36ab^2\\->(3a+2b)^3=27a^3+8b^3+18ab(3a+2b) \\->27a^3+8b^3=(3a+2b)^3-18ab(3a+2b) ---(a)
  • Now it is given that 3a+2b=6, \ \  ab=2  
  • Putting these values in (a) we get,
  •           ->27a^3+8b^3=(6)^3-18(2)(6)\\->27a^3+8b^3=216-216\\->27a^3+8b^3=0  
  • Hence the value the required equation is found to be 0.
Similar questions