Math, asked by geniusgirl90, 1 month ago

find the value alpha upon beta + beta upon alfa for 3x²+2x+5​

Attachments:

Answers

Answered by Anonymous
183

Given :-

The Quadratic equation 3x² + 2x + 5 = 0

To find :-

 \dfrac{ \alpha }{ \beta }  +   \dfrac{ \beta }{  \alpha }

SOLUTION:-

As we know that ,

In the Quadratic equation,

If {\alpha,\beta} are the roots then it is given by

 \alpha  +  \beta (sum \: of \: roots) =  \dfrac{ - b}{a}

 \alpha  \beta(product \: of \: roots)  =  \dfrac{c}{a}

So,

3x² + 2x + 5

Comparing with General form of Quadratic equation ax² + bx + c = 0

  • a= 3
  • b = 2
  • c = 5

So,

 \alpha  +  \beta  =  \dfrac{ - 2}{3}

 \alpha  \beta  =  \dfrac{5}{3}

Now, we need to find the

 \dfrac{ \alpha }{ \beta }  +   \dfrac{ \beta }{  \alpha }

Take L.C.M to the denominators

 \dfrac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }

We shall do squaring on both sides for this equation in order to get the value of {\alpha^2+\beta^2}

 \alpha  +  \beta  =  \dfrac{ - 2}{3}

( \alpha  +  \beta ) {}^{2}  =  (\dfrac{ - 2}{3} ) {}^{2}

 \alpha  {}^{2}  +  \beta  {}^{2}  + 2 \alpha  \beta  =  \dfrac{4}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}  +  \dfrac{2 \times 5}{3}  =  \dfrac{4}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}  +  \dfrac{10}{3}  =  \dfrac{4}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}   =  \dfrac{4}{9}  -  \dfrac{10}{3}

 \alpha  {}^{2}  +  \beta  {}^{2}  =  \dfrac{4 - 30}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}  =  \dfrac{ - 26}{9}

 \dfrac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }

Substituting the values ,

 \dfrac{ \dfrac{ - 26}{9} }{ \dfrac{5}{3} }

 \dfrac{ - 26}{15}

 \dfrac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }  =  \dfrac{ - 26}{15}


rsagnik437: Great ! :)
Answered by EmperorSoul
1

Given :-

The Quadratic equation 3x² + 2x + 5 = 0

To find :-

 \dfrac{ \alpha }{ \beta }  +   \dfrac{ \beta }{  \alpha }

SOLUTION:-

As we know that ,

In the Quadratic equation,

If {\alpha,\beta} are the roots then it is given by

 \alpha  +  \beta (sum \: of \: roots) =  \dfrac{ - b}{a}

 \alpha  \beta(product \: of \: roots)  =  \dfrac{c}{a}

So,

3x² + 2x + 5

Comparing with General form of Quadratic equation ax² + bx + c = 0

a= 3

b = 2

c = 5

So,

 \alpha  +  \beta  =  \dfrac{ - 2}{3}

 \alpha  \beta  =  \dfrac{5}{3}

Now, we need to find the

 \dfrac{ \alpha }{ \beta }  +   \dfrac{ \beta }{  \alpha }

Take L.C.M to the denominators

 \dfrac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }

We shall do squaring on both sides for this equation in order to get the value of {\alpha^2+\beta^2}

 \alpha  +  \beta  =  \dfrac{ - 2}{3}

( \alpha  +  \beta ) {}^{2}  =  (\dfrac{ - 2}{3} ) {}^{2}

 \alpha  {}^{2}  +  \beta  {}^{2}  + 2 \alpha  \beta  =  \dfrac{4}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}  +  \dfrac{2 \times 5}{3}  =  \dfrac{4}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}  +  \dfrac{10}{3}  =  \dfrac{4}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}   =  \dfrac{4}{9}  -  \dfrac{10}{3}

 \alpha  {}^{2}  +  \beta  {}^{2}  =  \dfrac{4 - 30}{9}

 \alpha  {}^{2}  +  \beta  {}^{2}  =  \dfrac{ - 26}{9}

 \dfrac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }

Substituting the values ,

 \dfrac{ \dfrac{ - 26}{9} }{ \dfrac{5}{3} }

 \dfrac{ - 26}{15}

 \dfrac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }  =  \dfrac{ - 26}{15}

Similar questions