Math, asked by simer8, 1 year ago

find the value if 81 upon 16 raise to power minus 3 upon 4 into 25 upon 9 whole raise to power minus 3 upon 2

Answers

Answered by coolhacker
38
This is your answer
May this will help you
Attachments:
Answered by SerenaBochenek
24

Answer:

\text{The value of }(\frac{81}{16})^{\frac{-3}{4}}\times (\frac{25}{9})^{\frac{-3}{2}}\text{ is }\frac{8}{125}  

Step-by-step explanation:

\text{we have to find the value of }(\frac{81}{16})^{\frac{-3}{4}}\times (\frac{25}{9})^{\frac{-3}{2}}

(\frac{81}{16})^{\frac{-3}{4}\times (\frac{25}{9})^{\frac{-3}{2}}

The above expression can be written as

(\frac{3^4}{2^4})^{\frac{-3}{4}}\times (\frac{5^2}{3^2})^{\frac{-3}{2}}

(\frac{3}{2})^{4\times {\frac{-3}{4}}}\times (\frac{5}{3})^{2\times {\frac{-3}{2}}

(\frac{3}{2})^{-3} \times (\frac{5}{3})^{-3}

\text{As }x^{-a}=\frac{1}{x^a}

(\frac{2}{3})^{3} \times (\frac{3}{5})^{3}

\text{As }x^{a}y^a=(xy)^a

(\frac{2}{3}\times \frac{3}{5})^3

(\frac{2}{5})^3=\frac{8}{125}

\text{Hence, the value of }(\frac{81}{16})^{\frac{-3}{4}}\times (\frac{25}{9})^{\frac{-3}{2}}\text{ is }\frac{8}{125}

Similar questions