find the value if c such that the equation 4x^2 - 2(x + 1)x + ( c+ 4) = 0 has real and equal roots
Answers
Answered by
0
Answer:
for roots to be equal, determinant D ie b^2-4ac= 0.
therefore putting the values respectively, we will get c = -7/2
Answered by
0
Step-by-step explanation:
To find the value of c = ?
Here, A = 4, B = - 2(c + 1) and C = c + 4
∴ D = B^{2} -4ACB
2
−4AC
= (- 2(c + 1))^{2} -4(4)(c + 4)(−2(c+1))
2
−4(4)(c+4)
= (4(c^2+2c+ 1)) -16(c + 4)(4(c
2
+2c+1))−16(c+4)
=4[(c^2+2c+ 1)) -4(c + 4)]=4[(c
2
+2c+1))−4(c+4)]
∵ The roots are real and equal roots,
D ≥ 0
4[(c^2+2c+ 1)) -4(c + 4)]=04[(c
2
+2c+1))−4(c+4)]=0
⇒ c^2+2c+ 1 -4c+16=0c
2
+2c+1−4c+16=0
⇒ c^2-2c-15=0c
2
−2c−15=0
⇒c^2-5c+3c-15=0c
2
−5c+3c−15=0
⇒c(c-5)+3(c-5)=0c(c−5)+3(c−5)=0
⇒ (c+3)(c-5)=0(c+3)(c−5)=0
⇒ (c+3)(c-5)=0
∴ c = 5 or - 3
Hence, the value of "c is 5 or - 3".
Similar questions