find the value in the figure
Answers
Answer:
330 degerr
Step-by-step explanation:
a+80=180
a=100........
c+90=180
c=90.........
b+150=180
b=30........
d+ 70=180
d=110.....................................
add a,b,c,d
100+110+90+30=330
hence proved
Given:
➝ ∠EDC = 70°
➝ ∠DCB = 90°
➝ ∠CBA = 150°
➝ ∠BAE = 80°
Concepts we'll be using to solve the question:
➝ Linear Pair.
➝ Angle Sum Property of a quadrilateral.
Solution:
On line AE:
➝ ∠a + ∠BAE = 180° (Linear Pair)
➝ ∠a + 80° = 180°
➝ ∠a = 180° - 80°
➝ ∠a = 100°
On line AB:
➝ ∠b + ∠ABC = 180° (Linear Pair)
➝ ∠b + 150° = 180°
➝ ∠b = 180° - 150°
➝ ∠b = 30°
On line BC:
➝ ∠c + ∠DCB = 180° (Linear Pair)
➝ ∠c + 90° = 180°
➝ ∠c = 180° - 90°
➝ ∠c = 90°
On line DC:
➝ ∠d + ∠EDC = 180° (Linear Pair)
➝ ∠d + 70° = 180°
➝ ∠d = 180° - 70°
➝ ∠d = 110°
In polygon ABCDE,
➝ ∠A + ∠B + ∠C + ∠D + ∠E = 540° (ASP of a Pentagon)
➝ 80° + 150° + 90° + 70° + ∠E = 540°
➝ 390° + ∠E = 540°
➝ ∠E = 540° - 390°
➝ ∠E = 150°
On line AE:
➝ ∠e + ∠AED = 180° (Linear Pair)
➝ ∠e + 150° = 180°
➝ ∠e = 180° - 150°
➝ ∠e = 30°
Now, we have to find ∠a + ∠b + ∠c + ∠d + ∠e.
➝ ∠a + ∠b + ∠c + ∠d + ∠e
➝ 100° + 30° + 90° + 110° + 30°
➝ 360°
∴ ∠a + ∠b + ∠c + ∠d + ∠e = 360°